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Table: Recommendations for carbohydrates

R5.1

R5.2

The amount of glucose to be provided by PN should be guided by [1] the balance between meeting energy needs and the risks of overfeeding/excess glucose load
[2], phase of illness (acute, stable, recovery/growing) [3], macronutrient supply by enteral and parenteral nutrition, and [4] glucose administered outside enteral
and parenteral nutrition, e.g. with medication (GPP, conditional recommendation)

Excessive glucose intake should be avoided because it may be responsible for hyperglycemia (LoE 1—, RG A, strong recommendation), causes increased
lipogenesis and fat tissue deposition together with subsequent liver steatosis and enhanced production of VLDL triglycerides by the liver (LOE 2+, RG B, strong

recommendation), and may cause increased CO, production and minute ventilation (LoE 2+, RG B, strong recommendation)
R53 Glucose intake does not lower protein catabolism in the acute phase of critical illness (LoE 1—, RG A, strong recommendation)

R54 Recommended parenteral glucose supply in (pre)term newborns in mg/kg per min (g/kg per day) (LoE 2+, RG B, conditional
Day 1 Day 2 onwards
Start with Increase gradually over 2—3 days to
Preterm newborn 4-8 (5.8—11.5) Target 8—10 (11.5—-14.4)
Min 4 (5.8); max 12 (17.3)
Term newborn 2.5-5(3.6-7.2) Target 5—10 (7.2—14.4)
Min 2.5 (3.6); max 12 (17.3)
R5.5 Newborns < 28 days of age, who have an episode of acute illness such as infection or sepsis, should temporarily receive the carbohydrate supply of day 1 (R5.4),
guided by the blood glucose levels (GPP, conditional recommendation)
R 5.6 Recommended parenteral glucose supply in infants and children according to body weight and phase of illness. The units are mg/kg/min (g/kg per day) (LoE 1+,
RG A, strong recommendation)
Acute phase Stable phase Recovery phase
28 d—10 kg 2—4(2.9-5.8) 4—-6 (5.8—-8.6) 6—10 (8.6—14)
11-30 kg 1.5-2.5(2.2-3.6) 2—4 (2.8—5.8) 3—-6(4.3-8.6)
31-45 kg 1-1.5(1.4-2.2) 1.5-3(2.2—-4.3) 3—4 (4.3-5.8)
>45 kg 0.5—1(0.7-1.4) 1-2(1.4-2.9) 2-3(2.9-4.3)
Acute phase = resuscitation phase when the patient requires vital organ support (sedation, mechanical ventilation, vasopressors, fluid resuscitation).
Stable phase = patient is stable on, or can be weaned, from this vital support.
Recovery phase = patient who is mobilizing.
R5.7 Blood glucose measurements should preferably be performed on equipment validated for use such as blood gas analysers (LoE 2+, RG B, strong recommendation)

R 5.8 Hyperglycaemia >8 mmol/L (145 mg/dL) should be avoided in paediatric ICU patients because of increased morbidity and mortality (LoE 1+, RG A, strong

recommendation)

R 5.9 In children in the PICU, repetitive blood glucose levels >10 mmol/L (180 mg/dL) should be treated with continuous insulin infusion (LoE 1+, RG A, strong
recommendation)

R5.10 Hyperglycaemia >8 mmol/L (145 mg/dL) should be avoided in neonatal ICU patients because it is associated with increased morbidity and mortality (LoE 2—, RG
B, strong recommendation)

R5.11 Inneonates in the NICU, repetitive blood glucose levels >10 mmol/L (180 mg/dL) should be treated with insulin therapy, when reasonable adaptation of glucose
infusion rate has been insufficient (LoE 2++, RG 0, conditional recommendation)

R5.12  Repetitive and/or prolonged hypoglycaemia <2.5 mmol/L (45 mg/dL) should be avoided in all ICU patients (extrapolated LoE 2+, RG 0, strong recommendation)

1. Methods cells and serves as metabolic fuel for muscle, liver, heart, kidneys

Literature Search

Medline search, Pub-Med search, Embase, expert search

Search conducted on 30.11.2014 and on 17.09.2016

Timeframe: publications from <1946 to 17.09.2016>.

Type of publications: original papers, meta-analyses and
overviews

Key words: children, parenteral nutrition, glucose, carbohy-
drate, energy-resource, insulin, critical illness

Language: English

2. Introduction

R 5.1 The amount of glucose to be provided by PN should be guided by [1]
the balance between meeting energy needs and the risks of
overfeeding/excess glucose load [2], phase of illness (acute, stable,
recovery/growing) [3], macronutrient supply by enteral and
parenteral nutrition, and [4] glucose administered outside enteral
and parenteral nutrition, e.g. with medication (GPP, conditional
recommendation, strong consensus)

Carbohydrates are the main source of energy in nutrition and
usually provide 40—60% of the energy supply in western diets. The
majority of the carbohydrate derived from a normal diet reaches
the body's peripheral tissues as glucose. Glucose is utilised by all

and gut and as the obligate energy source for brain, renal medulla
and erythrocytes. Glucose is the main carbohydrate utilized during
foetal life; in the last trimester of pregnancy about 5 mg/kg per min
(7 g/kg per day) of glucose crosses the placenta. In parenteral
nutrition (PN) carbohydrate is provided as dextrose (p-Glucose), in
its monohydrate form. Dextrose usually contributes most to the
osmolality of the PN-solution.

Recommendations were established by considering [1]| the
consequences of excessive glucose intake during PN [2], the rate of
glucose production and oxidation and [3] the risk of hypo-
glycaemia. Energy provision during PN includes the use of intra-
venous fat emulsions (IVFE) (see Lipids chapter) and intravenous
amino acid administration (see Amino acids chapter). Therefore,
the recommendations for these macronutrients need to be taken
into account in order to meet the energy requirements.

When establishing the lower and upper glucose intake recom-
mendations two important factors have to be considered; respec-
tively cerebral glucose utilization and the effect of glucose intake on
protein catabolism [1]. A recommendation for higher glucose
intake in the neonatal or paediatric ICU would decrease the risk of
hypoglycaemia and presumably provide more energy for protein
anabolism and growth. However, whole body glucose metabolism
in neonates and children is highly modified during (acute) critical
illness [2—4]. During acute illness protein catabolism is not modi-
fied with increasing glucose intake, while hyperglycaemia, which
occurs more frequently during this phase, might be as undesirable
as hypoglycaemia [5—7]. Therefore, the basis for glucose intake
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recommendation in the acute, critically ill neonate or child de-
serves a separate approach.

Glucose metabolism is influenced by age, acute illness, nutri-
tional state and the concomitant provision of other macronutrients.
Hence, the amount of glucose to be provided by PN should be
guided by [1] the balance between meeting energy needs and the
risks of overfeeding/excess glucose load [2], phase of illness (acute,
stable, recovery/growing) [3], macronutrient supply from enteral
and parenteral nutrition, and [4] glucose administered outside
enteral and parenteral nutrition, e.g. with medication.

The statements and recommendations that follow should be
taken into consideration when treating a (critically) ill child or
neonate who cannot be enterally fed during the acute and/or stable
phase of his illness. Neonates and children with a (suspected) un-
derlying metabolic disorder require specific carbohydrate intakes,
which are not covered in this chapter.

3. Consequences of overfeeding with glucose

R5.2 Excessive glucose intake should be avoided because it may be
responsible for hyperglycemia (LoE 1—, RG A, strong
recommendation), causes increased lipogenesis and fat tissue
deposition together with subsequent liver steatosis and enhanced
production of VLDL triglycerides by the liver (LOE 2+, RG B, strong
recommendation), and may cause increased CO, production and
minute ventilation (LoE 2+, RG B, strong recommendation, strong
consensus)

R5.3 Glucose intake does not lower protein catabolism in the acute
phase of critical illness (LoE 1—, RG A, strong recommendation,
strong consensus)

When glucose is administered in excess of the amount that can
be directly oxidized for energy production and glycogen synthesis,
the excess is directed to lipogenesis, thus promoting fat deposition
[8,9]. Restoration or accumulation of fat stores may be a nutritional
goal in infants and children with (severe) malnutrition or rapid
growth, by providing more lipids rather than by excessive carbo-
hydrate administration. Excessive fat deposition and dyslipidaemia
may be deleterious, especially during the acute phase of critical
illness [10]. The conversion of glucose into lipids partially accounts
for the increase in energy expenditure observed with high rates of
glucose infusion [11]. Excessive glucose intake as well as total en-
ergy delivery and amino acid intake, increases CO, production and
minute ventilation [12—14]. Excessive glucose intake may also
impair liver function especially by inducing steatosis, while its
contribution to the development of cholestasis is not clearly
established [15,16]. Studies in healthy adults suggest that high
carbohydrate feeding leads to an increase in total very-low-density
lipoprotein (VLDL) triglyceride secretion rate from de novo syn-
thesis, primarily due to stimulation of the secretion of preformed
fatty acids (FA) [17]. These results imply that the liver derives its
energy from carbohydrate oxidation rather than from FA oxidation.
FA taken up by the liver are channelled into VLDL triglycerides.
Hepatic steatosis results when export of the VLDL triglycerides does
not keep pace with triglyceride production [17,18]. High carbohy-
drate intake, both in hypercaloric as well as eucaloric conditions,
leads to lipogenesis [19,20].

Furthermore, high carbohydrate intake induces insulin resis-
tance through activation of the transcription factor ChREBP (car-
bohydrate response element binding protein) to protect the liver
from glucose overload, which will lead to a counterproductive in-
crease in hepatic glucose production [21]. Critical illness causes
dyslipidaemia, characterized by increased triglycerides and VLDL,
and hypocholesterolaemia [10,22,23]. Although these pathways

have not been thoroughly studied in critically ill neonates or chil-
dren, dyslipidaemia has been observed in septic children [24].
Therefore, excess glucose intake may exacerbate critical illness
related dyslipidaemia in children as in adults.

Another concern of parenteral glucose overfeeding is its asso-
ciation with hyperglycaemia. In critically ill children this is caused
by insulin resistance as well as beta-cell dysfunction [25,26]. The
consequences and management of hyperglycaemia in critically ill
children are discussed in the final paragraph of this chapter.

Adding lipid emulsions and amino acid infusions allow the en-
ergy input to be diversified, and glucose intake to be decreased,
while maintaining adequate energy intake [27]. In preterm new-
borns, protein metabolism is influenced by the amount and
composition of energy intake [28,29].

The glucose intake recommendations in the former guidelines
did not cater for acute critical illness [30]. Under these circum-
stances, the administration of total caloric and glucose amounts
appropriate for healthy, growing infants and children may induce
hyperglycaemia and other metabolic derangements [5,31].
Decreased energy recommendations in the acute phase of critical
illness (chapter 1) allow the parenteral glucose intake to be
lowered. The amount of glucose and/or energy intake does not
impact protein metabolism in the acute post-operative phase
[6,7]. Reduced glucose intake in these critically ill infants safely
lowered high blood glucose levels, despite an increased endog-
enous glucose production [31,32]. A study in burned children
(age 7.3 + 5.4 y) also showed that judicious use of parenteral
nutrition within one week of injury by capping glucose intake at
5—7 mg/kg/min was safe and effective, while minimizing com-
plications of PN [33]. When a patient is recovering, insulin
resistance will decrease and glucose metabolism will improve.
This will allow a higher glucose supply, necessary for rehabili-
tation and growth.

4. Rate of endogenous glucose production and rate of glucose
oxidation

The efficiency with which glucose is utilised should guide the
upper limit of carbohydrate supply, while the lower limit is defined
by the risk of hypoglycaemia. The majority of quantitative estimates
of production and oxidation of glucose have been performed using
stable isotopic tracers and indirect calorimetry (IC) in healthy term
or preterm newborns. Stable isotope studies cannot be used at the
bedside and IC has several limitations. Furthermore, IC uses a
Respiratory Quotient >1 as marker of excessive glucose intake, but
this has not been validated. Rate of glucose oxidation (RGO) and
endogenous rate of glucose production (RGP) can be measured with
stable isotopes. Exogenous glucose delivered in excess of the rate of
glucose oxidation (RGO) may enter non-oxidative pathways and is
unlikely to improve energy balance. Decreasing or stopping
endogenous glucose production would be a normal physiological
response. When exogenous glucose is insufficient this would in-
crease the RGP, however this could be insufficient to prevent
hypoglycaemia. Again, these responses are affected by age as well
by the phase of illness.

4.1. Endogenous glucose production in preterm infants

In preterm infants RGP, gluconeogenesis and glycogenolysis
have been studied under different nutritional circumstances,
showing that RGP in preterm infants is influenced by IV glucose and
PN. RGP increased in preterm infants when the exclusive IV exog-
enous glucose administration was diminished from 6 to 4 mg/kg
per min. Nevertheless, the increased RGP was not enough to
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prevent a drop in plasma glucose concentration [39]. Gluconeo-
genesis is responsible for about 31% of RGP in fasting, healthy full
term newborns [40] and for up to 75% in healthy preterms receiving
IV glucose or PN [39,41]. RGP and gluconeogenesis can be stimu-
lated in preterm infants by administration of glycerol, IV lipids or
PN [39,42—44], but not by the administration of alanine [45].
Glucagon increases glucose production from glycogenolysis in
preterm infants. Nevertheless, the response is low, especially
considering their increased needs [46]. These studies show that
preterm infants are capable of glucose production and gluconeo-
genesis. However, production capacity is limited and therefore they
depend both on exogenous glucose and PN components to main-
tain glucose homeostasis and avoid hypoglycaemia.

On the other hand, several studies showed that in extremely
preterm neonates (24—29 weeks) endogenous glucose production
and gluconeogenesis on day 3—4 were not affected by the glucose
infusion rate or blood glucose levels [41,42,47]. In contrast, in
moderately preterm neonates (31 + 1.5 weeks) the endogenous
glucose production on day 8 was suppressed completely by
parenteral glucose intake [48]. These studies suggest that the
inability to suppress glucose production or gluconeogenesis may
contribute to the risk of hyperglycaemia in extremely preterm
infants.

4.2. Endogenous glucose production in older infants and children

The basal rate of endogenous glucose production (RGP) varies
from 2 mg/kg per min (2.9 g/kg per day) in adults, to 8 mg/kg per
min (11.5 g/kg per day) in preterm infants [39,49]. The RGP is
maximal during the postnatal period and decreases gradually with
age [46]. Few studies are available for infants and children, and
even fewer during acute critical illness. In post-surgical critically ill
infants (5—10 months of age) reducing parenteral glucose intake in
the acute phase to 2.5 mg/kg per min lowered high glycaemic levels
and increased the RGP, primarily through increased glycogenolysis
[31,32].

4.3. Rate of glucose oxidation

During PN, the rate of parenteral glucose delivery should not
exceed the maximum rate of glucose oxidation (RGO). Only three
studies have measured RGO in children, showing significant dif-
ferences among patients according to their age and clinical status.
In appropriate for gestational age preterm infants, the RGO is
6—8 mg/kg per min (8.6—11.5 g/kg per day) [50,51]. In term infants
after surgery or infants on long-term PN, the maximal RGO is about
12 mg/kg per min (17.2 g/kg per day) [52,53]. In contrast, a small
study in critically burned children (1—11 y) demonstrated the
maximal RGO (3.8 mg/kg per min or 5.5 g/kg per day) to be at a
glucose intake of 5 mg/kg per min [54].

4.4. General recommendations for parenteral carbohydrate intake

R54 Recommended parenteral glucose supply in (pre)term newborns
in mg/kg per min (g/kg per day) (LoE 2+, RG B, conditional
recommendation, strong consensus)

Day 1 Day 2 onwards

Start with
4-8(5.8-11.5)

Increase gradually over 2—3 days to

Target 8—10 (11.5-14.4)
Min 4 (5.8); max 12 (17.3)
Target 5-10 (7.2—14.4)
Min 2.5 (3.6); max 12 (17.3)

Preterm newborn

Term newborn 2.5-5 (3.6-7.2)

R5.5 Newborns < 28 days of age, who have an episode of acute illness
such as infection or sepsis, should temporarily receive the
carbohydrate supply of day 1 (R5.4), guided by the blood glucose
levels (GPP, conditional recommendation, strong consensus)

R 5.6 Recommended parenteral glucose supply in infants and children
according to body weight and phase of illness. The units are
mg/kg/min (g/kg per day) (LoE 1+, RG A, strong recommendation,
strong consensus)

Acute phase Stable phase Recovery phase
28 d-10 kg 2—4(2.9-5.8) 4-6 (5.8—8.6) 6—10 (8.6—14)
11-30 kg 1.5-2.5 (3.6-2.9) 2-4(2.8-5.8) 3-6 (4.3-8.6)
31-45 kg 1-1.5 (14-2.2) 1.5-3(2.2-4.3) 3—-4 (4.3-5.8)
> 45 kg 0.5-1(0.7-1.4) 1-2(1.4-2.9) 2-3(2.9-4.3)

Acute phase = resuscitation phase when the patient requires vital organ sup-
port (sedation, mechanical ventilation, vasopressors, fluid resuscitation).
Stable phase = patient is stable on, or can be weaned, from this vital support.
Recovery phase = patient who is mobilizing.

The phase of critical illness plays a role in the energy require-
ment (also see chapter Energy) and hence also in the carbohydrate
supply [55]. A recent large international multicentre randomised
controlled trial in 1440 critically ill children, including term neo-
nates, (PEPaNIC study) compared whether a strategy of with-
holding parenteral nutrition up to day 8 in the PICU (late parenteral
nutrition) was clinically superior to early initiation of supplemental
PN (initiated within 24 h after admission) [37, 38]. It was shown
that withholding parenteral nutrition for 1 week while adminis-
tering micronutrients intravenously was clinically superior to
providing early parenteral nutrition to supplement insufficient
enteral nutrition. No parenteral nutrition for 1 week significantly
reduced the number of new infections, the time on a ventilator,
kidney failure and increased the likelihood of earlier live discharge
from the PICU and the hospital with decreased direct medical costs
[34—36,40]. Based on the above statements we propose that most
likely lower amounts of energy/carbohydrate should be given to
acutely critically ill children. This acute phase of critical illness (first
hours to days) only covers the resuscitation phase when the un-
stable patient requires vital organ support (sedation, mechanical
ventilation, vasopressors, fluid resuscitation). When a patient has
been stabilised on, or can be weaned from, this vital support, he/she
is in the stable phase. When the child is mobilising, it is called the
recovery phase [55]. In the recovery phase more energy/carbohy-
drates should be provided, which should be further increased in the
recovery phase in order to achieve growth.

In (preterm) newborns energy/carbohydrate amounts are
gradually increased over the first postnatal days. Carbohydrate
intake is determined by energy requirements, blood glucose levels
and — after the nadir in postnatal weight loss — growth. The blood
glucose level is an important determinant for glucose supply on the
first postnatal day. Thereafter the glucose intake is increased
stepwise over the next 2—3 days, usually up to 10 mg/kg per min
(14.4 g/kg per day) in order to allow growth. Parenteral carbohy-
drate intake should preferably not exceed 12 mg/kg per min (17.3 g/
kg per day) and generally not be lower than 4 mg/kg per min (5.8 g/
kg per day) in preterm infants or 2.5 mg/kg per min (3.6 g/kg per
day) in term newborns.

Carbohydrate intake must be individualized, especially in
newborn infants with specific problems, e.g. hypo- or hyper-
glycaemia, severe perinatal asphyxia (as concomitant hypo-
glycaemia may exacerbate brain damage), hyperinsulinaemia, and
newborns on (long-term) PN with lipid intolerance or insufficient
growth. Finally, as stated before, these statements and recom-
mendations are not applicable to neonates and children with a
(suspected) metabolic disorder.
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5. Dysglycemia and blood glucose management

5.1. Blood glucose measurements

R5.7 Blood glucose measurements should preferably be performed on
blood gas analysers (LoE 2+, RG B, strong recommendation,
strong consensus)

Blood glucose management starts with measuring blood glucose
levels. These measurements should be accurate and accessible for
bedside nurses and doctors at the bedside. Due to the use of
capillary blood, anaemia and drugs that interfere with the enzy-
matic reaction of the blood glucose measurement such as ascorbic
acid and acetaminophen, the accuracy of handheld blood glucose
meters is less accurate in critically ill patients [56]. In critically ill
patients blood glucose levels can be measured most accurately yet
still practically on arterial blood using blood gas analysers [57—59].
In patients who do not need an arterial line, handheld blood
glucose meters may be used [58,60].

In newborn infants the accuracy of handheld blood glucose
meters is still of great concern [60—62]. Factors that influence
glucose measurements are (amongst others) high haemoglobin
levels and high bilirubin levels [62—64]. Despite this, handheld
blood glucose meters are frequently used in daily clinical practice
since they provide very rapid results. Standard laboratory testing is
not preferable because of the delay in obtaining a result and the
possibility of falsely low results due to ongoing glycolysis in the
sample, if appropriate pre-analytical guidelines are neglected [65].
At present, the best method combining quick results and accuracy
is delivered by blood gas analysers with glucose modules for blood
glucose measurements in newborn infants [66,67].

5.2. Hyperglycaemia

R5.8 Hyperglycaemia >8 mmol/L (145 mg/dL) should be avoided in
paediatric ICU patients because of increased morbidity and
mortality (LoE 1+, RG A, strong recommendation,
strong consensus)

R5.9 In PICU, repetitive blood glucose levels >10 mmol/L (180 mg/dL)
should be treated with continuous insulin infusion (LoE 1+,

RG A, strong recommendation, strong consensus)

R 5.10 Hyperglycaemia >8 mmol/L (145 mg/dL) should be avoided in
neonatal ICU patients because it is associated with increased
morbidity and mortality (LoE 2—, RG B, strong
recommendation, strong consensus)

R5.11 In NICU, repetitive blood glucose levels >10 mmol/L (180 mg/dL)

should be treated with insulin therapy, when reasonable
adaptation of glucose infusion rate has been insufficient
(LOE 2+, RG 0, conditional recommendation, strong consensus)

In preterm infants, the most common definition of hyper-
glycaemia is a blood glucose level exceeding 10 mmol/L (180 mg/
dL) [68] and this has been associated with increased morbidity
[69—73]. Insulin therapy in (preterm) newborns is effective in
treating or preventing hyperglycaemia, but also leads to an
increased incidence of hypoglycaemia. There is no evidence for
recommending tight blood glucose management in the NICU [74].
Hence, insulin therapy at a low starting dose is preferred and only
when reasonable adaptation of the glucose infusion rate is insuf-
ficient to control neonatal hyperglycaemia [75,76].

In critically ill children, hyperglycaemia has consistently been
associated with increased morbidity and mortality [77—81].
Malnourished children with hyperglycaemia have a greater risk of

mortality than well-nourished patients [82]. The definitions for
hyperglycaemia range from blood glucose levels above 7 mmol/L
(126 mg/dL) [83] to levels above 8.3 mmol/L (150 mg/dL) [84].In a
single-centre RCT, tight blood glucose management, to levels be-
tween 2.8 and 4.4 mmol/L (50—80 mg/dL) in infants and between
3.9 and 5.6 mmol/L (70—100 mg/dL) in children, reduced the inci-
dence of nosocomial infections, shortened length of stay in the ICU
and lowered mortality rate [85]. However, a quarter of the children
in the intervention group experienced at least one episode of
hypoglycaemia below 2.2 mmol/L (40 mg/dL). Also in severely
burned paediatric patients, intensive insulin therapy decreased
morbidity [86]. Blood glucose control to a slightly higher target
range than the study by Vlasselaers et al. did not result in a better
outcome in multicentre trials, in comparison with the control group
in which insulin treatment was only started in case of excessive
hyperglycaemia [87,88]. A meta-analysis of these four trials
revealed that tight blood glucose control in critically ill children
does not decrease mortality, but reduces new infections. Yet, tight
blood glucose control is strongly associated with a higher incidence
of hypoglycaemia [89].

5.3. Hypoglycaemia

R 5.12 Repetitive and/or prolonged hypoglycaemia <2.5 mmol/L
(45 mg/dL) should be avoided in all ICU patients (extrapolated

LoE 2+, RG 0, strong recommendation, strong consensus)

In critically ill children hypoglycaemia is defined as a blood
glucose level below 2.8 mmol/L (50 mg/dL) [90] or below 3.3 mmol/
L (60 mg/dL) [91]. A recent systematic review and meta-analysis
proposed to define hypoglycaemia as 2.2—2.5 mmol/L
(<40—45 mg/dL) in newborns and 3.3—3.6 mmol/L (<60—65 mg/
dL) in children [90]. The association between hypoglycaemia and
mortality risk is less robust in critically ill children, since severity of
illness and age may be important confounders [90,92]. Also the
long term consequences of a brief period of low glucose levels, that
are not associated with clinical signs, remain uncertain. Four years
after study inclusion in the trial on tight blood glucose manage-
ment and being exposed to hypoglycaemia, the children who un-
derwent tight blood glucose control did not show impaired
neurocognitive development [92]. Studies on the effect of hypo-
glycaemia in the postnatal period on subsequent neuro-
development are mostly of poor methodological quality and so far
could not provide a valid estimate [93]. In preterm newborns a
large cohort study reported impaired motor and cognitive devel-
opment at 18 months [94], but found no differences in develop-
mental progress or physical disability 15 years after recurrent low
blood glucose levels (<2.5 mmol/L) in the first 10 days after birth
[95]. In a more recent cohort study neonatal (>35 weeks) hypo-
glycaemia was not associated with impaired neurological outcome
at two years when treated to maintain blood glucose concentra-
tions of at least 2,6 mmol/L (47 mg/dL) [96]. In (preterm) newborns
the suggested blood glucose operational threshold concentrations
at which clinicians should consider intervention are: a single
measurement of blood glucose <1 mmol/L (18 mg/dL); blood
glucose level <2 mmol/L (36 mg/dL) which remains below the same
value at the next measurement; or a single measurement of
<2.5 mmol/L (45 mg/dL) in a newborn with abnormal clinical signs
[97]. Certainly newborns with risk factors for hypoglycaemia, such
as premature birth, low birth weight and perinatal asphyxia,
require close monitoring and management of their blood glucose
levels [98].
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