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ABSTRACT
Functional gastrointestinal disorders—recently renamed 
into disorders of gut–brain interaction—such as irritable 
bowel syndrome and functional dyspepsia are highly 
prevalent conditions with bothersome abdominal 
symptoms in the absence of structural abnormalities. 
While traditionally considered as motility disorders or 
even psychosomatic conditions, our understanding of 
the pathophysiology has evolved significantly over the 
last two decades. Initial observations of subtle mucosal 
infiltration with immune cells, especially mast cells 
and eosinophils, are since recently being backed up by 
mechanistic evidence demonstrating increased release of 
nociceptive mediators by immune cells and the intestinal 
epithelium. These mediators can activate sensitised 
neurons leading to visceral hypersensitivity with 
bothersome symptoms. The interaction between immune 
activation and an impaired barrier function of the gut 
is most likely a bidirectional one with alterations in the 
microbiota, psychological stress and food components 
as upstream players in the pathophysiology. Only few 
immune-targeting treatments are currently available, but 
an improved understanding through a multidisciplinary 
scientific approach will hopefully identify novel, more 
precise treatment targets with ultimately better 
outcomes.

INTRODUCTION
Functional gastrointestinal (GI) disorders are 
defined by abdominal symptoms in the absence of 
a structural abnormality explaining the problems. 
Among the most frequent conditions are irritable 
bowel syndrome (IBS) characterised by abdominal 
pain in association with an altered stool pattern 
and functional dyspepsia (FD) with upper abdom-
inal symptoms (figure 1).1 2 FD symptoms can be 
triggered by a meal in the postprandial distress 
syndrome (PDS) or present as epigastric pain or 
burning not related to food intake in case of the 
epigastric pain syndrome.2 In the absence of a 
biomarker, diagnosis relies on symptom criteria of 
which the Rome IV criteria are the most recent and 
best validated.3 In a recent large-scale population 
study by the Rome foundation, the prevalence of 
IBS and FD was estimated at 4.1 and 7.2%, respec-
tively, using the strict Rome criteria,4 even if for IBS 
the current criteria have been criticised for being 
too restrictive in terms of symptom description 
(only pain, not discomfort) and frequency.5

The research focus on the pathophysiology of 
functional GI disorders has significantly evolved 

over the last 50 years. Functional GI disorders were 
initially considered to be purely psychosomatic 
disorders without a disease substrate in the GI tract. 
Subsequently, with the development of new tools 
to examine the function of the GI tract in the 70s 
and 80s including manometry, GI scintigraphy and 
breath testing, attention shifted to changes in GI 
motility including an exaggerated gastrocolonic 
reflex in IBS and delayed gastric emptying in FD.6–8 
Disappointingly, the link between symptoms and 
disordered motility is limited and has not translated 
into efficacious treatment options. For example, 
even if delayed gastric emptying can be found in up 
to 25% of patients with FD, the correlation to symp-
toms is inconsistent9–11 and the efficacy of currently 
available prokinetics is suboptimal and therefore 
not recommended as first-line therapy in the Amer-
ican, Canadian and European guidelines.12–15 The 
recognition of the interplay between central (eg, 
psychological comorbidity including stress and 
anxiety, altered brain processing) and peripheral, 
GI alterations (eg, disordered motility, visceral 
hypersensitivity, immune activation, …) led to the 
renaming of ‘functional gastrointestinal disorders’ 
to ‘disorders of gut-brain interaction’ (DGBI) in the 
Rome IV consensus definition (figure  2).3 In the 
past 20 years, visceral hypersensitivity, rather than 
dysmotility, has emerged as a central theme in the 
pathophysiology of DGBI. Visceral hypersensitivity, 

KEY MESSAGES
	⇒ Functional gastrointestinal disorders—or 
disorders of gut–brain interaction—are highly 
prevalent conditions with limited effective 
treatment options.

	⇒ Mucosal sensory neurons in irritable bowel 
syndrome patients are sensitised through an 
increased release of nociceptive mediators from 
immune cells and the epithelium.

	⇒ Subtle infiltration and activation of mast cells 
and eosinophils, both a source of nociceptive 
mediators, have been demonstrated in irritable 
bowel syndrome and functional dyspepsia.

	⇒ Psychological stress, food components, 
microbiota and an impaired barrier function 
may all contribute to immune activation in 
functional gastrointestinal disorders.

	⇒ Novel treatment options, specifically targeting 
neuroimmune interactions in irritable bowel 
syndrome and functional dyspepsia, are 
currently being investigated.
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that is, abnormal pain signalling to chemical stimuli and/or 
mechanical distention, has been reported in a variety of patient 
populations ranging from patients suffering from non-cardiac 
chest pain,16 gastro-oesophageal reflux disease,17 18 FD19–22 and 
IBS.23–25 In the current review, we will discuss recent advances 
in basic and translational research in humans which help us to 
understand how changes in the GI microenvironment contribute 
to the development of visceral hypersensitivity in IBS and FD, 
with a focus on immune activation and neuroimmune interac-
tions. In particular, we will critically discuss the literature on 
potential mechanisms leading to activation of eosinophils and 
mast cells, including impaired barrier function, reactions to food, 
diet–microbiome interactions and psychological comorbidity, 

and how improved insight in the pathophysiology could be 
potentially translated into novel treatments.

Visceral pain signalling and visceral hypersensitivity
Although sensory neurons located in the enteric nervous system 
represent key sensors in local neural circuits involved in secre-
tion, absorption, motility and so on, stimuli triggering visceral 
sensations are mainly conveyed by extrinsic sensory pathways 
that link the gut to the central nervous system.26 These extrinsic 
nerve fibres have their cell body in the dorsal root ganglia, 
synapse in the dorsal horn of the spinal cord, and can be clas-
sified into different subtypes of sensory endings depending on 

Figure 1  Rome IV criteria of functional dyspepsia and irritable bowel syndrome. EPS, epigastric pain syndrome; PDS, postprandial distress syndrome.

Figure 2  Pathophysiological mechanisms in disorders of gut–brain interaction.
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the layer they innervate; mucosal, muscular, muscular/mucosal, 
vascular, serosal and mesenteric afferents.27 28 Visceral pain in 
particular is detected by pain sensing neurons or nociceptors 
dedicated to detect harmful thermal, mechanical or chem-
ical stimuli. To this end, their peripheral nerve terminals are 
equipped with a variety of receptors and ion channels that can 
be classified into pronociceptive (or excitatory) and antinocicep-
tive (or inhibitory) (figure 3). Transient receptor potential (TRP) 
channels (TRPV1, TRPV4), acid-sensing ion channels, puri-
nergic and histaminergic receptors, protease activated receptors 
(PAR1-2) are examples of pronociceptive receptors while typical 
examples of antinociceptive receptors are opioid and cannabi-
noid receptors. Depending on the balance between pronocicep-
tive and antinociceptive signals, the nociceptor will signal to the 
spinal cord transmitting pain to the brain stem, thalamus and 
cortex. While acute pain is a physiological mechanism of protec-
tion informing the organism on a potentially harmful condition 
or injury, chronic visceral pain is debilitating and can result from 
either peripheral or central mechanisms affecting pain signalling. 
Central mechanisms include sensitisation at the level of the spinal 
cord and abnormal pain processing in the brain. The latter has 
been elegantly demonstrated mainly by functional MRI revealing 
abnormal local and global connectivity in the areas related to 
pain processing.29 In this review, we will focus on peripheral 
mechanisms affecting the function of visceral nociceptors in 
patients suffering from functional GI disorders.

Visceral hypersensitivity consists of a painful response to a 
normally innocuous stimulus (allodynia) and/or an exaggerated 
response to a painful stimulus (hyperalgesia). This condition 
can result from increased levels of pronociceptive or decreased 
levels of antinociceptive mediators in the tissue, upregulation of 
excitatory receptors or sensitisation of these receptors located 
on nerve terminals.

Increased release of soluble mediators
Although decreased release by peripheral blood mononuclear 
cells (PBMCs) of antinociceptive mediators, in particular opioids, 
has been described in patients with constipation-predominant 
IBS,30 further evidence supporting this mechanism of aberrant 
pain signalling is rather limited. In contrast, increased levels of 

pronociceptive mediators activating sensory neurons has been 
repeatedly reported in supernatant of biopsies collected from 
patients with IBS. IBS supernatant indeed contains more hista-
mine and tryptase than supernatant of healthy control biopsies 
and activates murine visceral afferents or human submucosal 
neurons, a phenomenon blocked by histamine antagonists 
and serine protease inhibition.31–33 Intestinal epithelial cells of 
patients with IBS produce and release increased levels of the 
active protease trypsin-3, able to signal to enteric neurons and 
induce visceral hypersensitivity.34 Of interest, increased levels of 
the TRPV4 agonist 5,6-epoxyeicosatrienoic acid, a metabolite of 
polyunsaturated fatty acids, have also been reported in IBS biop-
sies (figure 3).35 The evidence indicating altered synthesis and 
release of pronociceptive mediators in FD is limited, although 
increased spontaneous release of histamine and serotonin by 
gastric biopsies has been reported, in particular in patients 
suffering from postinfectious FD.36 Besides immune cells, 
enteroendocrine cells (EEC) represent another source of released 
mediators such as serotonin. Increased numbers of EEC have 
been reported in colonic biopsies of patients with diarrhoea-
predominant IBS (IBS-D) which was linked to symptom severity, 
but evidence on EEC activation in DGBI is missing.37 38 Besides 
production of soluble mediators, subgroups of EECs, labelled as 
neuropod cells, have been demonstrated to synapse directly with 
neurons.39 These neuropod cells may function as sensors for 
luminal signals, but their role in pathophysiology and symptom 
generation in DGBI remains to be investigated.

Not only in the gut, but also increased release of prono-
ciceptive mediators in peripheral blood of patients has been 
reported. Medium collected from cultured PBMCs from patients 
with IBS-D or FD contains more interleukin (IL)−1b, IL-10, 
tumor-necrosis factor (TNF)-a and IL-6 than that of healthy 
controls.30 40 Of note, murine visceral afferents respond with 
direct activation to IL-6 and IL-10, not to TNF-a.30 To what 
extent peripheral blood cells behave similar to tissue resident 
immune cells remains however to be confirmed.

Increase excitability of pronociceptive receptors
Increased firing of visceral afferent can also result from increased 
expression (upregulation) of pronociceptive receptors or ion 
channels in the plasma membrane or sensitisation of these sensors. 
Increased expression of TRPV1 and TRPV2 has been reported in 
gastric biopsies of patients with FD,41 while TRPV142–44 and the 
purinoreceptors P2Y1 and P2Y242 are increased in rectosigmoid 
biopsies of patients with IBS (figure 3). A recent study also found 
elevated expression of TRPV1 and TRPV3 in duodenal biop-
sies of patients with IBS which correlated with abdominal pain 
scores in case of TRPV1.45 Inflammatory mediators such as nerve 
growth factor or inflammatory cytokines can induce increased 
ion channel expression and transport to the cell membrane of 
visceral afferents. Of interest, also exposure of DRG neurons 
to serotonin or histamine results in increased expression of 
TRPV4 receptors at the plasma membrane surface. This effect 
was already observed 5 min after treatment and blocked by a 
specific mitogen-activated protein kinase (MAPK) inhibitor indi-
cating that this effect was not due to new synthesis of TRPV4 but 
rather to redistribution to the plasma membrane, a phenomenon 
involving a MAPK pathway.46

Sensitisation of nociceptors involves a reduction in the 
threshold of activation associated with an increase in the 
response to noxious stimuli. Using live Ca2+ imaging, we previ-
ously demonstrated that submucosal neurons in rectal biop-
sies from patients with IBS were significantly more excited by 

Figure 3  Neuronal mechanisms of visceral hypersensitivity. 5,6-EET, 
5,6-epoxyeicosatrienoic acid; ASIC, acid-sensing ion channel; CB1, 
cannabinoid receptor 1; DRG, dorsal root ganglion; H1R, histamine 
1 receptor; P2Y1/2, purinergic receptor P2Y1/2; PAR1/2, protease-
activated receptor 1/2; TRPA1, transient receptor potential ankyrin 1; 
TRPV1/4, transient receptor potential vanilloid 1/4.
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TRPA1, TRPV1 and TRPV4 agonists than neurons of healthy 
controls. Of note, gene expression of these receptors was 
similar between patients with IBS and controls, indicating that 
the respective TRP channels are sensitised rather than upreg-
ulated,47 48 and may contribute to aberrant pain signalling in 
IBS. In contrast to IBS, structural abnormalities and decreased 
responses of duodenal submucosal neurons to general stimuli, 
including high concentrations of potassium and electrical stim-
ulation, were noted in FD, which correlated with the degree of 
duodenal eosinophil and mast cell infiltration.49

Besides neurons, enteric glial cells are a second important 
cell type of the enteric nervous system and are involved in the 
modulation of neuronal function, but also in epithelial barrier 
function.50 Activation of enteric glial cells (ie, gliosis) was shown 
in FD49 and IBS,51 although an earlier study found decreased 
glial cell responses during Ca2+ imaging on exposure to IBS-D 
supernatant which was dependent on activation of the histamine 
receptor 1 (H1R).52

Clearly, as noted above, submucosal enteric neurons are not 
transmitting nociceptive information to the central nervous 
system. However, TRP channel sensitisation of submucosal 
neurons strongly suggests that the microenvironment in which 
these neurons reside contains mediators with sensitising proper-
ties and thus can equally affect neighbouring nerve terminals of 
extrinsic visceral afferents. Of note, incubation of biopsies from 
healthy controls with histamine results in sensitisation of TRPV1 
on submucosal neurons, suggesting the possible involvement of 
histamine in the hyperexcitability of pain signalling pathways.47 
Obviously, other mediators such as cytokines, serotonin, prote-
ases and metabolites of polyunsaturated fatty acids, present in 
supernatant of colonic/rectal biopsies can all contribute.

Aberrant visceral pain signalling induced by biopsy 
supernatant
Finally, preclinical studies involving both in vivo assessment of 
visceral pain and in vitro recording of visceral afferents have 
provided convincing evidence that supernatant, in particular 
collected from IBS biopsies, contains mediators that excite 
nociceptors and induce visceral hypersensitivity.28 For example, 
Cenac et al elegantly demonstrated increased trypsin and 
tryptase expression and release in colonic biopsies of patients 
with IBS and sensitisation of murine sensory neurons in vitro.53 
Interestingly, administration of IBS supernatant into the colon of 
mice resulted in increased pain responses evoked by colorectal 
distension. These pronociceptive effects were blocked by serine 
protease inhibitors and a PAR2 antagonist and absent in PAR2-
deficient mice, clearly demonstrating the involvement of prote-
ases. Along the same line, application of IBS supernatant to 
murine visceral nociceptive afferents32 54 or human submucosal 
neurons33 results in increased neuronal firing, effects mediated 
by histamine, serotonin and proteases.

Taken together, the above evidence clearly indicates that the 
microenvironment in the intestine of IBS and most likely also of 
functional dyspeptic patients possesses pronociceptive proper-
ties increasing pain signalling in these patients.

IMMUNE ACTIVATION
The most likely source of nociceptive mediators in the intes-
tinal microenvironment described above is the mucosal immune 
system. Even if obvious macroscopic or microscopic inflam-
mation is not compatible with a diagnosis of a functional GI 
disorder following the Rome criteria, cumulative evidence from 

the last two decades suggests an important role for mucosal 
immune activation in both IBS and FD.

Immune cell infiltration and activation
Immune cell infiltration in DGBI was first demonstrated in 
patients who developed IBS after an infectious gastroenteritis 
with a persistently elevated number of mononuclear cells 
and T lymphocytes in rectal biopsies.55 56 Since then, several 
groups reported similar findings and a meta-analysis confirmed 
increased T-cells in the lamina propria of the rectosigmoid.57 
In contrast, gastroduodenal lymphocyte infiltration, including 
intra-epithelial lymphocyte counts, does not come up as a 
consistent feature of FD,58 59 even if two small studies reported 
elevated CD8+T cell counts and aggregates in postinfectious 
FD.60 61 Peripheral blood lymphocytes expressing gut-homing 
markers were increased in FD40 and IBS.62–64 Whether the circu-
lating gut-homing lymphocytes have a role in the pathogenesis 
of the disease, including GI immune activation remains to be 
demonstrated.

More importantly, the most reproducible finding in the liter-
ature relates to the involvement of mast cells and eosinophils in 
the pathophysiology of IBS and FD, respectively (figure 4). In 
2004, the Bologna group was the first to report increased mast 
cell numbers in rectal biopsies of 44 patients with IBS.31 These 
findings were corroborated by several other studies, mainly 
in the left hemicolon and to a similar extent in the different 
IBS subtypes, with some studies demonstrating an association 
between mast cell numbers and symptom.57 65 Nevertheless, 
the mast cell infiltration is not an undisputed finding as some 
groups have not detected a difference or even lower mast cell 
counts.57 66 67 These differences may relate to the patient selec-
tion, location of the biopsy but also the quantification meth-
odology (eg, slide preparation, staining, counting). Moreover, 
it is unlikely that the subtle increase in immune cell numbers 
is relevant for symptom induction and may be an epiphenom-
enon in the context of immune cell activation. Indeed, mast 
cell activation—rather than just the numbers—demonstrated by 
degranulation and release of mast cell mediators such as hista-
mine and tryptase in supernatant emerges as a more consistent 
finding with more relevance to symptom generation, based on 
a correlation between symptom severity and the distance of the 
mast cells to mucosal nerves.31 68 Moreover, as discussed above, 
IBS supernatant-induced hyperreactivity of neurons which could 
be blocked by histamine receptor H1 antagonists and protease 
inhibitors, underscoring the importance of mast cell derived 
soluble mediators in neuronal hyperreactivity.32 33 47 The role of 
mast cells in FD is less established, although a few studies have 
shown increased duodenal mast cell counts.59 69 Mast cell acti-
vation in FD is suggested by a study using electron microscopy 
showing more heterogeneous granules in duodenal mast cells in 
FD and evidence of increased release of histamine and tryptase 
from gastric biopsies.36 70 Similar to IBS, mast cells were more 
likely to be localised near mucosal nerves in the stomach and the 
duodenum.36 71

In FD, however, a more prominent role has been attributed 
to duodenal eosinophil infiltration which has been reported 
by multiple groups (figure  4).69 Duodenal eosinophils as well 
as their activation and degranulation were often also linked to 
symptoms, although only based on statistical correlations and 
mechanistic evidence is still largely lacking.59 69 In the initial 
reports, it was suggested that duodenal eosinophilia was a feature 
of PDS,72 but a recent meta-analysis showed similar counts in the 
FD subgroups.69 Nevertheless—and similar to data on mast cell 
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counts in IBS—elevated duodenal eosinophil counts were not 
detected in all cohorts: in the largest study to date, Järbrink-
Seghal et al found no association between duodenal eosinophil 
counts and FD in 178 patients and 258 controls, while degran-
ulation, that is, activation, was associated to FD and symptoms 
of early satiety.73 These discrepancies in the literature may again 
come down to patient selection, the variability in quantification 
methodology and stress that research should focus on activa-
tion of immune cells rather than quantification of cell numbers, 
similar to IBS. Another important confounder in the FD litera-
ture is also the use of comedication, most notably proton-pump 
inhibitors (PPIs), which is not appropriately addressed in most 
studies. In a recent prospective study, we have shown that the use 
of a PPI, which is still the first-line treatment for FD as recom-
mended by guidelines,14 lowered duodenal eosinophil and mast 
cell counts in the short term, although prolonged treatment may 
provoke opposite, proinflammatory effects, potentially through 
duodenal dysbiosis by overgrowth of oropharyngeal flora.74 75 
Indeed, the increased numbers of duodenal eosinophils after 
longer term PPI in patients without symptomatic benefit of the 
PPI and in healthy individuals treated with PPI for 4 weeks, 
were linked to increased abundance of Streptococci in duodenal 
brushings.75 Increased duodenal abundance of streptococci has 
recently been linked to symptom severity in FD.76 In IBS, a few 
studies have found eosinophil infiltration in the colon77 and a 
recent Swedish study found increased levels of faecal eosinophil-
derived neurotoxin in patients with IBS on top of mucosal infil-
tration and degranulation as shown by histology.78 Surprisingly, 
few data are available on gastric immune activation in FD with 
only one study reporting higher mast cell counts in gastric biop-
sies of patients with FD.36

Unfortunately, the large majority studies described above have 
only considered histological cell counts rather than immune 
cell activation which is most likely the critical factor in DGBI. 
For example, healthy subjects treated with PPI also displayed 
increased duodenal eosinophil counts in the absence of abdom-
inal symptoms,74 highlighting that the reported limited increases 
in cell counts cannot be hold accountable for symptoms just by 
their presence and that future research should focus on activa-
tion of immune cells and the produced mediators.

Circulating and tissue cytokines
The data on systemic and mucosal cytokine expression and release 
are contradictory and interpretation is hampered by small patient 
numbers and in most cases selective analysis of a limited number 
of cytokines. In a meta-analysis, a tendency towards increased 
circulating TNF-α and lower colonic release of IL-10 was the 
only signal that emerged in IBS, although the magnitude was 
limited.79 Another possible reason for the lack of a clear immune 
signal is the heterogeneity of the condition itself which is only 
defined by subjective symptoms. It is to be expected that only a 
subgroup of DGBI patients will exhibit a mild immune activation 
signature. Indeed, in several larger studies, 1/5 to 1/3 of patients 
with IBS demonstrated an ‘immuno-active’ phenotype in terms 
of systemic release or local expression of inflammatory media-
tors.80–82 In a recent study, we demonstrated that 1/3 of patients 
with IBS exhibited signs of immune activation in biopsies from 
the descending colon.82 This group showed higher expression of 
IL1β, prostaglandin synthase PTGS2 and the G-protein coupled 
receptor Mas-related G-protein coupled receptor member X2. 
The latter is of interest since it is a receptor involved in mast 

Figure 4  Immune activation in irritable bowel syndrome and functional dyspepsia. Food and microbiota-derived antigens gain access to the 
subepithelial space through an impaired intestinal barrier function. These antigens and epithelium-derived proteases such as trypsin-3 can activate 
mast cells and eosinophils through a variety of mechanisms. Mediators from activated mast cells and eosinophils can subsequently activate sensory 
neurons. Finally, in conditions of psychological stress locally secreted CRH from eosinophils can activate mast cells. CRH, corticotropin-releasing 
hormone; CRHR1, CRH receptor 1; ECP, eosinophil cationic protein; EDN, eosinophil-derived neurotoxin; Eo, eosinophil; EPO, eosinophil peroxidase; 
FcERI, high-affinity IgE receptor; MBP, major basic protein; MC, mast cell; MRGPRX2, Mas-related G-protein coupled receptor member X2; NK1/2, 
neurokinin receptor 1/2; PAR2, Protease-activated receptor 2; SP, Substance P; TLR4, Toll-like receptor 4; VPAC1, vasoactive intestinal peptide receptor 
type 1. Dashed line indicates a potential link.
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cell activation and eosinophil-mast cell interaction,83 even if it 
was only expressed in a minority of the biopsies.82 Neverthe-
less, in none of the mentioned studies, a link between symptom 
pattern or severity and the immune phenotype could be estab-
lished. Similarly, large studies are lacking in FD and even if 
mildly elevated IL-1 and IL6 expression in the duodenal and 
gastric mucosa have been reported, the findings are limited to 
single studies with a small sample size.59 One small study found a 
higher production of the Th2 related cytokines IL-5 and IL-13 by 
stimulated PBMCs, which is of interest based on the eosinophil-
predominant immune signal in FD, although confirmatory data 
are needed.84 Finally, discretely increased high-sensitive C-reac-
tive protein levels in patients with FD in our recent study, which 
normalised after PPI treatment, also suggest a systemic immune 
signal although the relevance to symptom generation of these 
minute systemic changes is most likely limited.74

Aetiology of GI immune activation
We selected four potential mechanisms leading to immune acti-
vation for which reasonable evidence is available in the current 
literature demonstrating a mechanism of action, beyond the 
existence of an associative link with immune activation.

Impaired barrier function
The intestinal barrier represents the largest interface between the 
environment and the internal milieu of the organism. The barrier 
has a dual function of protecting the organism from unwanted 
penetration of luminal, potentially noxious substances including 
pathogens and their secreted products, while at the same time 
allowing absorption of fluid and (micro)nutrients. The barrier 
also plays a critical role in suppressing immune activation 
towards orally ingested innocuous antigens, mainly food, in a 
process defined as oral tolerance.85 To achieve oral tolerance, 
luminal antigens are sampled by microfold (M) cells in Peyer 
patches, mucosal macrophages or goblet cells, subsequently 
acquired by tolerogenic dendritic cells which then migrate to 
mesenteric lymph nodes with induction of immunosuppressive 
regulatory T-cells.

Disruption of this tightly regulated barrier function has been 
described in a variety of conditions, including coeliac disease, 
inflammatory bowel disease, food allergy and functional GI 
disorders.86 However, measurement of intestinal barrier func-
tion is complex and contributes to the variability of the reported 
data. Direct measurement of permeability of endoscopic biopsies 
in Ussing chambers is still the gold standard, but less frequently 
used.86 87

In a recent systematic review, most of the 66 analysed studies 
in IBS found a reduced small intestinal or colonic barrier 
function, which was mainly present in postinfectious and 
diarrhoea-predominant IBS and to a lesser extent in constipa-
tion predominant IBS.88 Positive associations with altered stool 
pattern and pain were identified in the majority of the studies, 
although an inverse association has been reported as well.89 Simi-
larly, multiple studies have reported increased duodenal perme-
ability in FD using in vivo techniques (urinary sugar excretion 
tests, mucosal impedance and confocal laser endomicroscopy 
(CLE)) and biopsies in Ussing chambers, although a link with 
symptom severity was absent in most studies.87

The expression of several tight junction related proteins, 
which are the key determinants of epithelial barrier function, 
in different regions of the GI tract was shown to be altered in 
IBS and FD, although the reported changes were not consistent 
between studies.87 88 Colonic infusion of faecal supernatant of 

patients with IBS in mice or application of biopsy supernatant 
on cell lines resulted in lower barrier function, indicating the 
involvement of luminal mediators.90–93 The identity of these 
mediators is still unclear, but proteases, microbial products, food 
and bile acids are the main candidates (figure 4). Currently, most 
of the evidence supports a role for proteases. Faecal superna-
tant of patients with IBS contains increased levels of serine and 
cysteine proteases which were associated with impaired barrier 
function and altered tight junction expression.90 91 94 95 Several 
studies demonstrated that these proteases are from human 
origin, including the epithelium-derived trypsin-3.34 93 95 A 
recent elegant study demonstrated that high proteolytic activity 
in patients with postinfectious IBS was related to impaired 
suppression of the host-derived proteases by the microbiota.93

It is often hypothesised that the impaired barrier function 
allows uncontrolled penetration of antigens in the lamina 
propria, inciting an immune response. However, whether the 
increase permeability plays a causal role in these conditions or is 
rather a consequence of the immune activation remains a topic 
of ongoing controversy. In support of the last option, tryptase 
released from mast cells96 97 and major basic protein from eosin-
ophils98 have been shown to impair permeability in cell lines. 
Moreover, stabilising mast cells by ketotifen or blocking the 
receptors for vasoactive intestinal polypeptide on mast cells 
reduced transcellular passage of commensal and pathogenic 
bacteria in colonic biopsies of patients with IBS.99 We previously 
demonstrated a correlation between duodenal eosinophil levels 
and decreased protein expression of phosphorylated occludin 
and E-cadherin, but mechanistic data in humans with FD are 
lacking.100

Interpretation of the relevance of intestinal barrier function 
in the pathophysiology of DGBI is hampered by the lack of 
treatments which can stabilise the barrier. A possible exception 
is glutamine which improved symptoms and normalised barrier 
function in patients with postinfectious IBS,101 possibly through 
an upregulation of claudin 1.102 However, replication of these 
data in a larger multicentric study is warranted.

Food
It is well documented that a majority of patients with FD and IBS 
link their symptoms to food intake (figure 2).103 104 Especially 
the role of FODMAPs or fermentable oligosaccharides, disac-
charides, monosaccharides and polyols in symptom generation 
is well established in IBS and is thought to mainly result from 
their osmotic effects and fermentation in the colon with gaseous 
distension.105 Of interest, recent studies have provided exciting 
evidence that certain foods can also trigger immune-mediated 
reactions in the GI tract. Bischoff et al injected food antigen 
extracts in the caecal mucosa of patients with chronic abdom-
inal symptoms and suspected food allergy, 77% of whom reacted 
to at least one injection with a weal and flare reaction, which 
was associated with local eosinophil and mast cell activation.106 
This concept was further developed by studies using CLE, using 
in vivo fluorescence microscopy after intravenous fluorescein 
administration, with food extract (wheat, yeast, gluten, cow’s 
milk) application to the duodenal mucosa. Frischer-Ravens et al 
demonstrated a positive reaction, with increases in intraepithe-
lial lymphocytes, formation of interepithelial gaps and cell shed-
ding, in 2/3 of patients in 2 cohorts of patients with IBS without 
elevated systemic IgE levels.107 108 Wheat was the trigger in more 
than half of the patients. Patients with a positive reaction had a 
favourable response to an exclusion diet, although a sham diet 
and a diet in the CLE negative group were lacking, hampering 
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interpretation of the relevance of the test-based diet in clinical 
practice. Of interest, even if the total number of eosinophils and 
mast cells were not different in patients with IBS with or without 
a positive reaction versus healthy controls, a positive reaction 
was associated with release of eosinophil-cationic protein, high-
lighting again the importance of released mediators rather than 
cell counts.108 This observation is somewhat surprising as the 
mucosal immune system is educated not to react against innoc-
uous antigens such as dietary antigens, that is, oral tolerance.28 85 
Only failure to develop or loss of oral tolerance to food antigens, 
for example, following an infection will lead to the development 
of diseases such as food allergy and coeliac disease.109–112 In case 
of food allergy, antigen-specific IgE antibodies directed against 
dietary antigens can be detected in the systemic circulation. 
These antibodies bind to IgE receptors on mast cells resulting in 
mast cell sensitisation and ultimately activation when crosslinked 
by binding of the respective antigen.112 Notably, increased levels 
of systemic IgE antibodies against food epitopes can however 
not be detected in patients with IBS or FD.113 114 These findings 
suggest that either non-IgE mediated eosinophil/mast cell acti-
vation or an IgE-mediated reaction confined to the GI mucosa 
is involved.

Recently, Aguilera-Lizarraga et al elegantly highlighted a role 
of local but not systemic IgE antibodies against a dietary antigen 

in an animal model of visceral hypersensitivity.68 Feeding of the 
dietary antigen ovalbumin during an infectious colitis (Citro-
bacter rodentium) resulted in loss of oral tolerance resulting 
in the local production of ovalbumin-specific IgE antibodies in 
the colon. Feeding of ovalbumin after clearance of the infection 
resulted in IgE-dependent mast cell activation and sensitisation 
of visceral afferents leading to abnormal pain signalling. These 
data are in line with the clinical observation that an infectious 
gastroenteritis is a major risk factor to develop IBS.115 Moreover, 
and similar as in the studies described above, injection of food 
antigens in the rectosigmoid mucosa of patients with IBS elicited 
a mucosal reaction. Finally, IgE positive mast cells were more 
prevalent in patients with IBS and located at a shorter distance 
from nerve endings, correlating to severity of symptoms.68 
Taken together, these data indicate a role for local IgE antibodies 
against dietary antigens in food-induced symptoms in IBS and 
introduce a new mechanism explaining mast cell activation in 
IBS. We propose that IBS may be part of a spectrum of food-
induced disorders mediated by mast cell activation with systemic 
food allergy at the extreme end of the spectrum. Similar data in 
FD are currently still lacking.

Diet–microbiome interactions
Altered microbial composition and metabolomic profiles 
have been found in patients with IBS compared with healthy 
controls.116–118 It is unclear, whether these changes are conse-
quence or cause of altered bowel function, diet and symptoms, 
but accumulating data suggest that at least in some patients, the 
symptoms of IBS could be attributed to specific microbial neuro-
active metabolites, such as serotonin or tryptamine.118 119 This 
is not surprising as gut bacteria can produce many neurochem-
ical mediators that are found in mammals using their dietary 
precursors.120

Histamine, previously linked to visceral hypersensitivity, 
increased permeability and altered motility, can be produced 
by the microbiome as many bacteria possess the enzyme histi-
dine decarboxylase (HDC) that converts dietary histidine into 
histamine (figure 5).121 122 There are two main types of bacterial 
HDC, pyridoxal phosphate-dependent and pyruvoyl-dependent 
ones.122 While the former is found in Gram-negative bacteria 
(such as Enterobacter aerogenes, Raoultella ornytolytica or 
Morganella morganii), the latter is encountered in Gram-positive 
bacteria, especially in lactic acid producing strains such as 
Lactobacilli.

Bacterial histamine has been identified as a culprit in food 
poisoning, for example, after consumption of certain fish, which 
can contain high histamine producing bacteria.121 However, 
histamine producers can be a permanent part of the human 
microbiome, as recent studies found increased incidence of hista-
mine producing bacteria in the gut of patients with inflammatory 
bowel disease,123 as well as those with asthma.124

Several studies identified histamine as one of the key 
compounds that separates urine metabolomic profiles, which 
result from the metabolic activity of both the host and the micro-
biome, between patients with IBS and healthy controls.125 126 
Furthermore, levels of urinary histamine seem to correlate with 
levels of IBS symptoms and abdominal pain.126

In a dietary intervention study, GI symptoms and pain improved 
in patients with IBS after reducing intake of FODMAPs, which 
was associated with decrease in urinary histamine and changes in 
gut microbiota composition.125 A subsequent translational study, 
which used faecal microbiome from those patients to colonise 
germ-free mice, found that mice colonised with microbiota from 

Figure 5  Food–microbiota interaction in visceral hypersensitivity. 
Bacterial histidine decarboxylase (HDC) in high-histamine producing 
species such as Klebsiella aerogenes metabolises dietary histidine 
into histamine which is stimulated by high intake of fermentable 
carbohydrates. Higher abundance of Lactobacilli reduces histamine 
production by lowering luminal pH through production of lactic acid. 
Bacteria-derived histamine can subsequently activate H4R on mast cells 
contributing to visceral hypersensitivity. FODMAPs, Fermentable Oligo-, 
Di-, Monosaccharides and Polyols; H1R, histamine 1 receptor; H4R, 
histamine 4 receptor; HDC, histidine decarboxylase; MC, mast cell; SCFA, 
short-chain fatty acids.
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patients with high urinary histamine developed visceral hyper-
algesia compared with mice colonised with microbiota from 
patients with low urinary histamine or healthy controls.127 The 
increased visceral sensitivity was associated with colonic mast 
cell hyperplasia, increased density of neural fibres and frequent 
colocalisation of mast cells with neural cells, findings previously 
observed in patients with IBS.31 The microbiota from patients 
with high urinary histamine produced large amount of hista-
mine, and a specific strain of Klebsiella aerogenes was identified 
as the main histamine producer, with ability to generate 100× 
more histamine than other isolated bacterial strains. Histamine 
production was highly pH dependent, suggesting that acidity 
of the colonic milieu, which is largely determined by bacterial 
fermentation of dietary fibre, can regulate bacterial histamine 
production (figure  5). Indeed, placing mice colonised with 
high histamine producing microbiota on a low fermentable 
diet, which was associated with changes in luminal lactic acid, 
decreased histamine production.

Mice colonised with high histamine producing bacteria had 
increased expression of histamine 4 receptors (H4R), which 
was detected in multiple cell types, including mast cells. H4R is 
known to mediate mast cell migration and recruitment,128 as well 
as regulate visceral sensitivity.129 Administration of H4R antag-
onists to mice colonised with histamine producing microbiota 
prevented mast cell hyperplasia and visceral hyperalgesia.127 
Thus, while in inflammation induced food hypersensitivity the 
H1R pathways are key,68 in case of bacterial histamine-to-host 
signalling the H4R dependent pathways play a major role. Bacte-
rial histamine is therefore a likely trigger in a subset of patients 
with IBS, and increased urinary histamine or high abundance of 
bacterial histidine decarboxylase gene may serve as biomarkers 
to identify those subjects.

Altered microbiome in patients with IBS, who are on high 
fermentable diet, may also lead to production of other immuno-
modulatory mediators. Recent studies found that levels of faecal 
and serum lipopolysaccharide (LPS) are elevated in patients with 
IBS-D,130 131 and that faecal LPS decreases when the patients are 
placed on a low FODMAP diet.132 A mouse study then showed 
that faecal LPS induces impairment of the barrier function and 
mast cell activation through TLR-4 pathways, thus demon-
strating another pathway by which microbiome could trigger 
symptoms of IBS.132

Also in FD changes in the composition of the gastric and 
duodenal microbiota have been described, although the findings 
across studies are quite diverse.75 76 133 134 Increased abundance 
of Streptococci has been described by several groups, but this 
finding may be confounded by the effect of PPI treatment.75 76 In 
a recent study from our group, a lower abundance of duodenal 
mucosa-associated Porphyromonas correlated with increased 
symptoms and eosinophils, although causality remains to be 
demonstrated.75

Psychological comorbidity
Psychological comorbidity, including stress, anxiety and depres-
sion, is common in patients with DGBI and affects symptoms 
and outcome (figure 2).135–138 Two studies have suggested a link 
between anxiety and depression on the one hand and duodenal 
eosinophilia139 and mast cell degranulation140 on the other hand, 
although at this stage it is unclear whether this association was 
confounded by the presence of FD itself, which is known to be 
linked to both.69 141

Stress may impact the intestinal barrier through a mast-cell 
dependent mechanism.142 143 A key mediator of this response 
is corticotropin-releasing hormone (CRH) which is not only 
secreted in the hypothalamus as part of the classical hypo-
thalamo–pituitary–adrenal axis activation, but also by eosino-
phils in the GI tract which can then subsequently activate mast 
cells.144 145 CRH release by eosinophils is triggered by psycho-
logical stress, possibly through activation of NK1/2 purinergic 
receptors on eosinophils by nerve-derived Substance P.144 More-
over, increased expression of CRH in eosinophils correlated 
with symptom severity and life stress in patients with IBS-D.146 
Mast cells carry CRH receptors and exogenous CRH has been 
shown to increase intestinal permeability in healthy individuals 
which was blocked by mast cell stabilisation and vagal nerve 
stimulation.142 147 148 Additionally, reduced expression of the 
antiinflammatory, antinociceptive and barrier-stabilising CRH 
receptor 2 (CRHR2) in duodenal biopsies of patients with FD 
was recently reported and may also contribute to stress-related 
mast cell activation in FD.149 150 Polymorphisms in both CRHR1 
and 2 have been associated with IBS and anxiety, but how this 
relates to mucosal immune activation is unexplored.151 152

TREATMENTS TARGETING THE GI IMMUNE 
MICROENVIRONMENT
Despite the available evidence for mucosal immune activation in 
IBS and FD, there is a paucity of therapies targeting this mech-
anism (figure 6).

Previous attempts with broad antiinflammatory agents in IBS 
have been disappointing. Prednisolone 30 mg for 3 weeks did 
not improve symptoms in a placebo-controlled study with 29 
patients with postinfectious IBS and there was no significant 
effect on rectal lymphocytes or mast cells.153 Similarly, a liquid 
formulation of budesonide, a corticosteroid with a high first pass 
metabolism was not effective in lowering duodenal eosinophil 
counts or improving symptoms in a small pilot study in FD.154

Based on the observation that 5-aminosalicylic acid was able to 
reduce release of histamine and prostaglandin D2 from mast cell 
cultures155 and reduced mast cell counts and histamine release 
in the rectum of patients with IBS,156 mesalazine was evaluated 
in two large multicentre trials in patients with IBS, which were 
both negative.157 158 A post-hoc analysis of the British study 
also failed to demonstrate increased mast cell counts or a gene 
expression signature indicative of inflammation in patients with 
IBS in comparison to healthy controls.159

Figure 6  Treatments targeting immune activation. Solid lines: a 
demonstrated benefit. Dashed lines: potential benefit, but not formally 
tested. 5-HT3, Serotonin 3 receptor; Eo, eosinophil; H1R, histamine 1 
receptor; MC, mast cell; PPI, proton-pump inhibitor.
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Because mediator release from specific immune cells is more 
likely to be involved in symptom generation than a classic 
inflammatory reaction as seen in, for example, inflammatory 
bowel disease, more specific mast-cell targeted therapies were 
trialled in IBS. The mast cell stabiliser disodium cromoglycate 
reduced abdominal pain and improved stool consistency in a 
small pilot study in patients with IBS-D, which was also asso-
ciated with reduced signs of mast cell activation.160 Ketotifen, 
another mast cell stabiliser, decreased visceral hypersensitivity to 
rectal distention and improved symptoms, but had no impact on 
mast cell counts or measured mediator release from rectal biop-
sies.66 These results were confirmed in a more recent study from 
China with similar improvement of symptoms and reduced mast 
cell counts in the terminal ileum but not in the colon.161 More 
specific eosinophil depleting and mast cell inhibiting therapies 
have not been evaluated in IBS and FD yet, but a study of liren-
telimab, a monoclonal antibody against Siglec 8, in eosinophilic 
gastritis and duodenitis, showed promising results.162 Notably, 
case reports describing clinical improvement of IBS symptoms 
in patients with severe asthma treated with the anti-IgE antibody 
omalizumab may indirectly support the role of IgE-mediated 
mast cell activation in IBS.163

An alternative approach to prevent mast cell or eosinophil 
activation is to block the nociceptive effect of their released 
mediators. Based on the observations that blocking the histamine 
receptor H1 prevented the neuronal excitation by supernatant 
from IBS biopsies, the histamine receptor H1 antagonist ebastine 
was evaluated in a pilot study showing improved symptom relief 
and reduced abdominal pain.47 Blockade of serotonin, another 
mast cell mediator known to activate and sensitise visceral affer-
ents, is another interesting approach to treat abdominal pain. 
5-HT3 antagonists such as alosetron and ramosetron have 
indeed been repeatedly shown to be effective as treatment of 
diarrhoea-predominant IBS, but possibly also involves an effect 
on colonic transit.164 Protease inhibitors have proven efficacy in 
preclinical models of visceral hypersensitivity, but clinical studies 
are lacking.165

In eosinophilic esophagitis, PPI have been shown to exert direct 
anti-inflammatory effects, independent of the acid-suppressive 
effects, based on a reduction of eotaxin-3 expression through 
inhibition of binding of STAT6 to its promotor, resulting in 
reduced eosinophil numbers.166 Starting from this observation, 
we investigated the effect of a 4-week treatment with 40 mg 
pantoprazole in patients with FD.74 Upper abdominal symptoms 
and duodenal eosinophils and barrier function improved. Of 
interest, the effect of pantoprazole on symptoms was mediated 
by the reduced eosinophil counts and not by changes in luminal 
pH, suggesting anti-inflammatory effects similar to its mecha-
nism in eosinophilic esophagitis. Nevertheless, the effect of PPI 
on duodenal eosinophil activation—besides reduction in cell 
counts—has not been reported to date. However, in the longer 
term, the beneficial effect of PPI may be overshadowed by induc-
tion of dysbiosis through duodenal overgrowth of oropharyn-
geal flora (cf. supra).75

CONCLUSION
Recent insights in the mechanisms underlying aberrant pain 
signalling in patients with FD and IBS indicate a role for immune 
activation in the GI tract, but clearly we have just started to 
unravel the complex pathophysiology of functional bowel disor-
ders. Accumulating evidence suggests immune activation of 
these conditions, but the underlying causes remain a hot topic 
for further research. Moreover, the therapeutic tools to address 

this immune activation in DGBI remain scarce. Intense collabo-
ration between immunologists, neurogastroenterologists, neuro-
scientists, microbiologists, psychologists, bioinformaticians and 
many more is undoubtedly needed to be successful. Only with 
this multidisciplinary scientific approach, new targets can be 
discovered to improve clinical management of these challenging 
conditions.
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