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Over the past 2 decades, the field of hepatology has wit-
nessed major developments in diagnostic tools, prognostic
models, and treatment options making it one of the most
complex medical subspecialties. Through artificial intelli-
gence (AI) and machine learning, computers are now able
to learn from complex and diverse clinical datasets to solve
real-world medical problems with performance that sur-
passes that of physicians in certain areas. AI algorithms are
currently being implemented in liver imaging, interpreta-
tion of liver histopathology, noninvasive tests, prediction
models, and more. In this review, we provide a summary of
the state of AI in hepatology and discuss current challenges
for large-scale implementation including some ethical as-
pects. We emphasize to the readers that most AI-based
algorithms that are discussed in this review are still
considered in early development and their utility and
impact on patient outcomes still need to be assessed in
future large-scale and inclusive studies. Our vision is that
the use of AI in hepatology will enhance physician perfor-
mance, decrease the burden and time spent on documen-
tation, and reestablish the personalized patient-physician
relationship that is of utmost importance for obtaining
good outcomes.
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Technological advancements have created the
unique opportunity to use artificial intelligence

(AI) and more specifically machine learning (ML) in
clinical medicine. With available computational power, AI
has the potential to transform patient care without losing
the patient-centric, physician-guided approach of tradi-
tional clinical medicine. This has become even more
evident during the COVID-19 pandemic, which provided
unprecedented advancements in technology acceptance
and availability in all areas of society and in particular
in the health care system. Although AI is considered
the overarching term that details the rational exploita-
tion of data by a machine, ML more specifically describes
the building of models that learn from available data to
improve the prediction or performance related to a spe-
cific task without actually programming.1 The ability of
ML algorithms to predict outcomes can be exploited
based on labeled (supervised) or unlabeled (unsuper-
vised) data. By using the ML algorithm over time and
providing more training, the desired output becomes
progressively more accurate. Deep learning (DL) refines
and narrows ML by using multiple neuronal networks
that mimic the human neurologic system to analyze,
identify, and learn from complex datasets.2 The neural
networks are organized in multiple layers where the
signal travels from the first layer (input) to the last layer
(output) after going through multiple intervening layers.

A few important issues have to be considered when
aiming to implement AI in the clinical environment today
(Figure 1). Beyond investments in technology in the
health care sector, the quality of the data that are used to
develop algorithms and predict outcome is most critical.
In the field of hepatology research, several large pro-
spective studies that are aimed to explore outcome are
actively recruiting and will provide the quality and
robustness of the data that are required.3,4 The enor-
mous potential to account for a large number of variables
in complex databases and determine the likelihood of
specific outcomes in a very short time, will markedly
outperform a single physician’s capability that operates
at the level of personal experience and medical educa-
tion. Despite high expectations by many stakeholders
and receptivity toward AI in the general society and
among medical professionals, the level of implementa-
tion in clinical practice today is relatively low.5

There are several limitations that must be taken into
account to allow for a safe application of AI and a higher
penetration into clinical care. The assembly of high-
quality representative data sets that eliminate un-
wanted and unconscious biases is a prerequisite for
building ML models that do not perpetuate health care
disparities. The inability of AI algorithms to account for
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Figure 1. Framework of artificial intelligence in clinical medi-
cine. Adapted from Lu Zx, Qian P, Bi D, et al. Application of AI
and IoT in clinical medicine: summary and challenges. Curr
Med Sci 2021;41:1134–1150.
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information gained from a direct patient-physician
interaction is an inherent limitation. The AI algorithms
will never be able to substitute for a physician’s direct
interaction with their patients. We view AI as a com-
plementary tool to significantly enhance patient-provider
interaction and patient care. For AI’s integration into
hepatology clinical practice, multiple currently open
questions need to be addressed including the quality of
data synthesized, operational procedures, data and sys-
tems safety, and ethical challenges. Ethical challenges
may arise from clinical decision making based on AI-
generated diagnostic algorithms that are not readily
recapitulated through medical reasoning. As seen with
automated driving, a critical question arises around re-
sponsibility and liability in the context of a decision that
is based on an AI algorithm. Similarly in medicine, the
consequences of false-positive and false-negative results
that are generated by AI are far reaching for patients and
their providers. This is exacerbated by the fact that AI
algorithms are comprised of complex interconnected
structures with numerous parameters and a “black box”
nature, offering little understanding of their inner
working. Explainable AI is a set of processes that allows
humans to comprehend the output created by ML algo-
rithms, which help develop trust in the system and meet
adherence to regulatory requirements.6

The challenges in hepatology are to allow for a safe
and evidence-based implementation of AI to support
clinical decision making. Several AI approaches have
been used in hepatology with a focus on identification of
cases (through imaging and noninvasive tests [NIT]),
augmentation of histologic analysis, and prediction of
outcome (Table 1). This review article focuses on current
developments in AI/ML with potential applications in
hepatology and defines areas of research that should be
addressed in the future. To prepare for this manuscript, a
literature search was conducted by the authors using the
electronic PubMed databased and the following search
terms: “artificial intelligence,” “machine learning,” and
“liver disease.” The authors selected the most relevant
English language articles to provide an overview of
where AI may impact the practice of clinical hepatology.

Current Data on the Use of Artificial
Intelligence in Hepatology in Imaging

Imaging modalities represent a cornerstone in the
assessment of liver disease. The ability to assess liver
morphology and perfusion in addition to masses or he-
patic steatosis as point-of-care testing is unprecedented.
Although ultrasound is the first-line technology in clinics
today, high-end imaging modalities include magnetic
resonance imaging (MRI) proton density fat fraction
(PDFF) to assess hepatic steatosis, magnetic resonance
elastography to assess liver and spleen stiffness, and
phase contrast MRI-enhanced imaging to allow for
assessment of blood flow. With these technologies, a
complete assessment of liver disease stage is possible
and the value of more invasive assessment through liver
biopsy has declined. Emerging data link these NITs to
clinically relevant outcomes.7 The wealth of data that are
acquired from these imaging modalities make these
technologies particularly suitable for postacquisition
processing using AI. Only a fraction of the available data
is actually used to build an image that informs the clin-
ical decision making.

The Application of Artificial Intelligence to
Enhance Ultrasound-Based Diagnostics

Most available research data were generated on the
use of AI in ultrasound assessment of liver disease.
Convolutional neural networks (CNNs) have shown a
very high accuracy of replicating the diagnosis of hepatic
steatosis made based on ultrasound B-mode images.8 In
a more recent analysis, DL of raw ultrasound data
reached an area under the receiver operating curve
(AUROC) of 0.98 when compared with the reference
standard MRI-PDFF in detecting hepatic steatosis, even
in the absence of phantoms to train imaging acquisition.9

Detection of significant (�F2) or advanced (�F3) fibrosis
by ultrasound-based elastography was explored in a
study that used 3392 images from 328 cases at the
Massachusetts General Hospital. Augmentation of shear
wave elastography using a CNN improved the AUROC of



Table 1. Summary of Potential AI Application in Hepatology

AI application in hepatology Examples of AI algorithms Limitations

Imaging - CNNs to diagnose hepatic steatosis based on ultrasound
images.

- CNNs for automated CT and MRI liver segmentation.

- Variations in data acquisition by
different scanners and imaging
protocols, and image reconstruction
methods.

Histology - ML algorithms to enable quantitative measurement of
NASH histologic features.

- ML algorithms to predict response to NASH treatment.
- ML algorithms to determine the presence of portal

hypertension and predict outcomes.

- Lack of universal standards for
digitization of slides, data formatting,
image data compression, and storage
of meta-data.

Identifying at-risk patients
using NITs

- Random forest ML model to predict the stage of fibrosis
and identify patients with fibrotic NASH.

- The AI-Cirrhosis-ECG score to detect cirrhosis.

- The need for high-quality
representative datasets to eliminate the
potential for bias.

Predicting outcomes - Cirrhosis Mortality Model to predict cirrhosis mortality.
- ML models to predict graft failure within 30 d from liver

transplantation.
- Random forest ML model to predict incident HCC.
- Primary sclerosing cholangitis risk estimate tool (PREsTo)

to predict outcomes in patients with PSC.

- Lack of prospective AI-based
randomized clinical trials that
demonstrate the added value of AI
models in improving clinical outcomes
for patients.

AI, artificial intelligence; CNN, convolutional neural network; CT, computer tomography; HCC, hepatocellular carcinoma; ML, machine learning; MRI, magnetic
resonance imaging; NASH, nonalcoholic steatohepatitis; NIT, noninvasive test; PSC, primary sclerosing cholangitis.
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conventional shear wave elastography from 0.74 to 0.89
for detecting the histologic stages �F2 by improving
image quality, the selection of a region of interest, and
classifying the region of interest.10 When considering
ultrasound for the detection of hepatocellular carcinoma
(HCC), a deep CNN demonstrated an AUROC of 0.92 for
distinguishing benign from malignant liver lesions.11

Importantly, this was superior to the diagnostic sensi-
tivity and specificity of experienced radiologists, com-
parable with contrast-enhanced computed tomography
(CT), and only slightly inferior to contrast-enhanced
MRI.11
The Application of Artificial Intelligence to
Enhance Computed Tomography– and
Magnetic Resonance Imaging–Based
Diagnostics

The high-performance metrics of AI and ML in
refining diagnostic accuracy for liver disease do not
overcome the inherent limitations that specific imaging
modalities have. Traditionally, the use of CT imaging to
detect hepatic steatosis did not exhibit a high accuracy
for mild hepatic steatosis.12 In a recent analysis using a
fully automated volumetric hepatosplenic segmentation
algorithm and 3-dimensional CNNs with MRI-PDFF as
reference standard, the AUROC to detect mild, moderate,
and advanced hepatic steatosis exhibited values of 0.669,
0.854, and 0.962, respectively.13 Thus, even CNN and
high-end CT imaging lack the accuracy to detect mild
degrees of hepatic steatosis.
The more advanced imaging modalities outperform
ultrasound in the diagnostic accuracy of hepatic steatosis
and detection of advanced fibrosis. Whole-liver seg-
mentation is an automated method that uses CNN for
imaging biomarkers. In a recent study, MRI-PDFF
detecting hepatic steatosis and transverse relaxometry
(R2*) detecting iron overload showed an excellent
agreement with the histologic lesions in 165 participants
of whom 61% had nonalcoholic fatty liver disease
(NAFLD).14 In a smaller study on 62 participants, texture
analysis–derived parameters on non-contrast-enhanced
T1-weighting was comparable with magnetic resonance
elastography to detect advanced versus early fibrosis.15

Using a generalized CNN automated liver segmentation
was feasible even across CT and MRI for automated liver
biometry.16

An area of special interest in AI-supported imaging is
the augmentation of radiology reports to routinely
include aspects of liver health and disease, even if the
indication to perform the radiologic examination is not in
the context of liver disease. The ability of MRIs to detect
changes in the nodularity of the liver surface correlates
well with the presence of advanced fibrosis on liver
histology.17 Therefore, one clinical application where AI
can run in the backend of an imaging server will be to
highlight the presence of increased surface nodularity to
trigger the radiologist to include the suspicions of
cirrhosis in the structured reports.18

Despite the promising results of AI algorithms in liver
imaging, several issues limit their widespread use
including variations in data acquisition by different
scanners, imaging protocols, and image reconstruction



Figure 2. The use of artificial intelligence in hepatology. (A) General approach to developing ML models for NAFLD histology
analysis. (B) Overview of augmentation of clinical decision making based on AI algorithms running in electronic health record
systems.
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methods to the final selection of radiomic features.19

Several concrete steps need to be taken to standardize
the measurement and analysis of imaging biomarkers.
The details of algorithm development including the
datasets and computer source code should be shared to
ensure transparent translation into the clinical workflow.
Current Data on the Use of Artificial
Intelligence in Hepatology in Histology

Determining the Severity of Nonalcoholic
Steatohepatitis and Assessing Response to
Treatment

Liver biopsy is still considered the gold standard for
diagnosing nonalcoholic steatohepatitis (NASH) and
fibrosis, although the semiquantitative evaluation of the
key histologic features of steatosis, inflammation,
ballooning, and fibrosis by the pathologists has been
shown to be subjective and prone to major intraobserver
and interobserver variability.20 In 2011, the Food and
Drug Administration provided a road map of drug
approval including the achievement of 1 of 2 histologic
end points as surrogates for outcomes: resolution
of NASH without worsening of fibrosis, or regression of
fibrosis by 1 stage or more without worsening of
NASH.21 Unfortunately, the reliance on histologic end
points has made it difficult to find suitable patients for
trials and to reliably assess response to different treat-
ments with clear examples from clinical trials doc-
umenting the lack of agreements among expert
hepatopathologists.22 This has created an opportunity to
use AI/ML algorithms to develop methods for quantifi-
cation of the main histologic features of NASH that are
less prone to variability by training the algorithm on
digitized slides that are annotated by expert pathologists
(Figure 2). In 2014, Gawrieh et al23 published one of the
first studies on using supervised ML classifiers to auto-
matically classify white regions in liver biopsies as a
method to provide continuous quantitative measurement
of macrosteatosis. The ML algorithm performed well
with 89% overall accuracy when compared with
consensus reading by 2 expert pathologists. The same
group developed an AI-based model to quantify liver
fibrosis and determine its pattern in patients with NASH



July 2023 AI in Liver Disease 2019
achieving good to excellent correlation between the
automatically generated collagen proportionate area and
the pathologist fibrosis staging with a coefficient of
determination ranging from 0.60 to 0.86.23 Another
group used data from 246 patients with biopsy-proven
NASH to develop a high-throughput ML-based quantifi-
cation of steatosis, ballooning, inflammation, and fibrosis
with high interclass correlation coefficient between the
manual annotation and the software ranging from 0.97
for steatosis to 0.92 for fibrosis.24

In the largest study to date, the PathAI team (Boston,
MA) used liver biopsy samples from 3 large NASH clin-
ical trials to build and validate a deep CNN to enable
quantitative measurement of NASH histologic severity.25

The ML parameters also predicted clinical outcomes,
such as progression to cirrhosis and hepatic decompen-
sation, and by quantification of more complex features,
such as portal inflammation and the ratio area of stea-
tosis to ballooning. Furthermore, a Deep Learning
Treatment Assessment (DELTA) Liver Fibrosis score was
developed to capture changes in fibrosis severity from
baseline to the end of treatment and showed correlation
with other noninvasive fibrosis markers, such as the
enhanced liver fibrosis score and liver stiffness by tran-
sient elastography. The same team at PathAI developed a
new ML score to predict hepatic vein pressure gradient
(ML-HVPG score) by using biopsies and HVPG measure-
ments from a phase 2b trial. The ML-HVPG score had a
stronger correlation with traditional HVPG than collagen
proportionate area by morphometry and was able to
identify patients with clinically significant portal hyper-
tension with good accuracy (AUROC of 0.85 and 0.76 in
the training and test sets, respectively).26 The advantage
of the ML-based score is the fact that HVPG can be
estimated from a standard percutaneous liver biopsy
without the need for highly specialized interventional
radiology procedures and human expertise to interpret
HVPG tracing.

In a series of abstracts presented at international
meetings, Noureddin et al developed histologic scores via
ML in a post hoc analysis of patients from the belapectin
phase 2a trial (NCT02462967). This trial provided a
cohort of patients with NASH cirrhosis (n ¼ 143) with
liver biopsies and phenotype data including HVPG and
clinical outcomes. This analysis consisted of discovery
and validation cohorts. A second harmonic generation/
2-photon excitation fluorescence imaging-based tool
provided an automated quantitative assessment of his-
tologic features related to cirrhosis: 252 features related
to septa, 21 related to nodules, and 184 related to
fibrosis (SNOF). The investigators developed a ML score,
SNOF, which significantly correlated with HVPG as a
continuous variable (r ¼ 0.57 for training and r ¼ 0.70
for validation; P < .05 for both) and significantly clini-
cally significant portal hypertension (AUROC of 0.85 for
training and 0.74 for validation). Investigators also
created 2 companion scores: SNOF-V score, which
significantly predicted the presence of varices (AUROC of
0.86 for discovery and AUROC of 0.73 for validation co-
horts); and SNOF-C score, which identified patients who
had >20% change in HVPG 12 months apart with an
AUROC of 0.89. Collectively, these data offer a compelling
proof-of-concept that ML tools can be applied to liver
histology to derive clinically important data that are
otherwise difficult to collect from patients.27,28

Since then, several AI/ML technologies have been
described to assess liver histology in the context of
conditional drug approval in the indication NASH. These
include second harmonic generation/2-photon excitation
to provide quantitative assessment of NASH histologic
features on unstained liver histology (Histoindex,
Singapore), automated fibrosis quantification from
stained slides (Pharmanest, Princeton, NJ), and multi-
parametric image analysis using proprietary software
tools on digitalized histologic slides of entire lobe sec-
tions (Biocellvia, Marseille, France).

These examples assert the integration of AI in the
interpretation of NASH histology given the decreased
variability in interpretation, fast processing of samples,
and decreased pathologist workload. It will be important
to have universal standardization of digitized slides in
terms of data formatting, image data compression, and
storage of metadata that will enable future discovery of
histopathologic biomarkers.

Diagnosing and Predicting Recurrence of
Hepatocellular Carcinoma

Multiple ML algorithms have been generated recently
that can diagnose HCC on liver histology and provide risk
stratification for recurrence of HCC after surgical resec-
tion.29 For example, Lal et al30 developed a DL network
architecture called NucleiSegNet to grade HCC nuclei on
hematoxylin-eosin-stained liver cancer histopathology,
which yielded superior results compared with traditional
nuclei segmentation methods. An important tool for HCC
surgery evaluation is segmentation of hematoxylin-eosin-
stained slides by pathologists to assess tumor load before
surgical resection and monitor treatment response. Wang
et al31 developed a neural network–based DL model for
automatic HCC segmentation that produced high accuracy
in 3 public databases.

Unfortunately, 50%–70% of patients with HCC
experience tumor recurrence at 5 years postsurgical
resection. Saillard et al32 developed 2 DL models based
on whole-slide digitized images for predicting survival
after HCC surgical resection and demonstrated better
performance of the DL models in comparison with
composite scores that used various clinical, pathologic,
and biologic factors. Similarly, Yamashita et al33 devel-
oped and validated a DL system called HCC-SurvNet from
hematoxylin-eosin-stained digitized slides that could
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stratify patients into high- and low-risk groups according
to their survival.

Current Data on the Use of Artificial
Intelligence in Hepatology in
Noninvasive Tests

NITs are the basis of clinical decision making in many
patients with liver disease. The interpretation of NITs
can be complex based on clinical aspects and requires
experience and training. Refinement and augmentation
of the interpretation of NITs by AI and ML has been
explored in several studies. A study from the Mayo Clinic
Rochester used ML to distinguish between alcohol-
associated hepatitis and acute cholangitis based on 10
commonly used laboratory variables including white
blood cell count, hemoglobin, mean corpuscular volume,
platelet count, aspartate aminotransferase (AST), alanine
aminotransferase (ALT), alkaline phosphatase, total bili-
rubin, direct bilirubin, and albumin.34 Exploring 265 case
of alcohol-associated hepatitis and 194 cases of acute
cholangitis, the ML algorithm demonstrated an excellent
performance with an AUROC of 0.932. Interestingly, an
online survey of physicians using the same 10 variables
resulted in an inferior diagnostic accuracy with an
AUROC of 0.790 highlighting the strength of ML.34 A
comparable approach was taken to improve the overall
low rate of identification of patients with NAFLD and
NASH. An AI algorithm that uses clinical data and stan-
dard laboratory studies available in electronic health
care records (EHRs) is the NASHmap algorithm. NASH-
map was built using the National Institute of Diabetes
and Digestive and Kidney Disease dataset on 704 pa-
tients with histologically defined NASH and validated in
the larger OPTUM EHR using an eXtreme Gradient
Boosting model (XGBoost) consisting of 14 features. The
performance of this 14-feature model to predict cases
with histologic NASH was good with an AUROC of 0.82.35

When decreasing the number of variables to 5 using only
hemoglobin A1c, AST, ALT, total protein, and tri-
glycerides, the AUROC to predict NASH was still 0.79.35

In a smaller analysis from Japan, the separation of
NAFLD from non-NAFLD cases was achieved by using 11
clinical variables including age, sex, height, weight, waist
circumference, AST, ALT, g-glutamyltransferase, choles-
terol, triglyceride, and platelet count. Here the AUROC in
the validation cohort was 0.950. Through extension of
clinical data with multiomics (genomic, transcriptomic,
proteomic, and metabolomic) data, a recent analysis that
aimed to detect liver fat content >5% on MRI in 1514
participants used LASSO (least absolute shrinkage and
selection operator) and yielded an AUROC of 0.84.36

More recently, ML models including logistic regression,
random forest (RF), and artificial neural network (ANN)
were implemented to predict the histologic stages of
fibrosis and the presence of fibrotic NASH using de-
mographic/clinical features in 1370 patients with
biopsy-proven disease. The ML models performed better
overall than traditional NITs for fibrosis37 with the
AUROC for the RF model versus vibration controlled tran-
sient elastography by FibroScan and the FIB-4 index for
�F2, �F3, and F4 being (0.86 vs 0.81; 0.78), (0.89 vs 0.83;
0.82), and (0.89 vs 0.86; 0.85), respectively. The ML model
included 17 readily available clinical variables, such as age,
body mass index, AST, platelet count, and the presence of
diabetes. This model can be implemented easily in the EHR
system to identify patients with fibrotic NASH that may
benefit from pharmacologic treatment. In fact, the RF
model performed as well as the FibroScan-based FAST
score in predicting fibrotic NASH with no statistically sig-
nificant difference in accuracy, AUROC, sensitivity, speci-
ficity, and positive- and negative-predictive values.

Importantly, these algorithms are not fit to substitute
for a clinical diagnosis but will allow to flag cases that are
otherwise not recognized as “at-risk of liver disease” and
could be particularly useful in primary care to support
the selection of referral cases (Figure 2).

One of the big challenges in nonspecialty clinics is the
identification of patients with compensated cirrhosis.
These cases are typically difficult to diagnose using stan-
dard clinical variables and laboratory tests. In a large
multicenter cohort with validation in a clinical trial cohort,
a model including international normalized ratio, g-gluta-
myltransferase, ALT, platelets, and age discriminated best
between patients with bridging fibrosis and cirrhosis with
an AUROC of 0.733 (95% confidence interval,
0.671–0.795).38 An approach that explored the liver-heart
axis to detect patients with advanced cirrhosis was
developed based on distinct abnormalities that are
detectable on electrocardiogram (ECG) tracings. The AI-
Cirrhosis-ECG score was developed in 5212 patients that
underwent liver transplantation at the 3 Mayo Clinic
transplant centers between 1988 and 2019. The model
distinguished advanced cirrhosis from control subjects
with an AUROC of 0.908 (84.9% sensitivity; 83.2% speci-
ficity) based on an analysis of ECG tracings independent of
comorbidities. These approaches could lead to the devel-
opment of low-cost tools in the care of patients when
expert hepatology advise might not be available.39 A
comparable approach aiming at identifying liver disease in
a primary care setting was explored by implementation of
automated analysis in a laboratory management system.
The Intelligent liver function testing (iLFT) study intro-
duced reflex testing of blood samples when increased liver
enzymes were detected.40 Through this approach, detec-
tion rates of liver disease increased by 43% compared
with historic rates. In addition, an automated diagnosis
and management plan was introduced resulting in a cost-
effective implementation in the UK National Health Service
mostly through decreasing unnecessary referrals.40

Prediction of HCC by AI is another intensively studied
area.29 In a large-scale analysis using clinical data and
laboratory values in 48,151 patients with hepatitis C
virus–related cirrhosis in the Veterans Affairs cohorts,
the ability of recurrent neural network models to predict
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HCC exhibited an AUROC of 0.759.41 Importantly, this
recurrent neural network used 4 baseline variables and
27 longitudinal variables.41

Other Potential Uses of Artificial
Intelligence and Machine Learning in
Hepatology

Predicting Cirrhosis Outcomes and Mortality

Several traditional risk scores have been developed to
estimate mortality risk in cirrhosis with the Model for
End-Stage Liver Disease (MELD) score being the most
commonly used.42 MELD was developed to predict
90-day mortality, which may be too short of a window
for most patients with cirrhosis except for those listed
for transplantation. Better understanding of long-term
prognosis can inform patients and caregivers prefer-
ences and goals of care and improve decision making for
clinicians. ML models have potential to greatly enhance
the predictive accuracy and improve prognostication
compared with traditional models but their black box
analytics have limited their use. Therefore, Kanwal et al43

used a hybrid approach that tested 3 different ML algo-
rithms in a retrospective large cohort from 130 hospitals
to predict cirrhosis mortality, and then developed a
blended model called the Cirrhosis Mortality Model that
used selected variables that were implemented in an
accessible platform. Cirrhosis Mortality Model out-
performed MELD for predicting 1-, 2-, and 3-year mor-
tality with the AUROC for 1-year mortality being 0.78 for
Cirrhosis Mortality Model and 0.67 for MELD (P < .001).

Readmissions are common in patients with cirrhosis
and represent major challenge for families and the health
care system overall, making adequate prediction of pa-
tients at high-risk for readmission within 90 days from
discharge a high priority.44 However, a recent study that
trained 3 AI models including logistic regression, RF, and
kernel support vector machine to predict 90-day read-
mission rates demonstrated only modest accuracy with
AUROC of 0.59, 0.62, and 0.62, respectively.45 These find-
ings underscore the fact that readmissions in cirrhosis are
influenced by the complex interactions of clinical, psy-
chosocial, and financial factors that may not be captured
by the EHR data. In the future, the use of AI to integrate
data from socioeconomic and biologic variables may help
improve prognostication and classification accuracy.46

Predicting Graft Survival after Liver
Transplantation

Given the increasing number of patients in need for
liver transplantation and the limited supply of deceased
donor livers, there is an urgent need to optimize listing
and allocation decisions to maximize utility.47 Traditional
predictive models, such as donor risk index and the
survival outcomes after liver transplantation, do not
capture the complex interactions among donor, recipient,
and the transplantation process that are known to affect
outcomes.48 Therefore, there is an opportunity for AI/ML
techniques to improve predictive accuracy based on
donor and recipient variables that are known at the time
of organ allocation. Lau et al49 developed ML models (RF
and ANN) to predict graft failure within 30 days from
transplantation in a dataset that included 180 trans-
plants and 276 available donor and recipient variables.
They also directly compared their ML models with
traditional liver scores and found that their ANN model
was superior to donor risk index and survival outcomes
after liver transplantation (AUROC of 0.84 compared
with 0.68 and 0.64, respectively). The difference of 0.16
in AUROC values between the ANN model and the donor
risk index can be considered clinically significant to
provide proof of concept that the ML model could be
used to support decision making in organ allocation.
More recently, a systematic review evaluated the use of
ML methodology to predict graft outcome following liver
transplantation.50 Nine studies met the inclusion criteria
and reported outcomes from 18,771 liver transplants
with ANNs being the most commonly used ML method-
ology (7/9 studies).

Despite promising results, there are several chal-
lenges to implementing ML models for organ allocation.
First, the issue of biologic plausibility when the algorithm
ends up including variables that are not considered
biologically or clinically relevant. Second, the issue of
generalizability and the fact that the ML algorithms
perform best for predicting outcomes on the dataset
from which they were derived and may not perform as
well on a global scale.

Improving Hepatocellular Carcinoma Early
Detection and Outcomes

AI has the potential to transform the full spectrum of
HCC clinical care by providing improved HCC risk pre-
diction, diagnosis, and prognostication/response to
treatment assessment. For more detailed discussion on
the role of AI in HCC management, we refer readers to an
excellent recent review by Calderaro et al.29 Several
studies have applied AI techniques to longitudinal EHR
data to predict incident HCC in high-risk populations
including an RF ML algorithm that had AUROC of 0.64,
which significantly outperformed the conventional
HALT-C model for predicting HCC.51 Another area where
ML algorithm may improve HCC care includes the
prognostication of established HCC and predicting
response to locoregional therapies. Wu et al52 built an
ANN model that included 15 clinical variables to predict
1- and 2-year survival of patients with HCC who received
radiofrequency ablation and showed good accuracy with
AUROC of 0.84. Similarly, another group developed an
ANN model to predict patient survival at 1 year after
transarterial chemoembolization for HCC with promising
performance (AUROC of 0.77).53
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Early Diagnosis and Predicting Outcomes in
Other Liver Diseases

Primary sclerosing cholangitis (PSC) is a progressive
cholestatic liver disease that is associated with advanced
fibrosis, portal hypertension, and higher risk for colo-
rectal and hepatobiliary malignancies.54 Given the het-
erogeneous nature of the disease and the overall low
event rate over a short period of time, developing pre-
dictive models that can simplify the design of clinical
trials is a high priority.55 The Primary Sclerosing Chol-
angitis Risk Estimate Tool (PREsTo) leveraged gradient
boosting, an ML technique, to predict hepatic decom-
pensation (ascites, variceal hemorrhage, or encephalop-
athy) in 2 large cohorts of patients with PSC.56 PREsTo
included 9 clinical variables (bilirubin, albumin, alkaline
phosphatase times the upper limit of normal, platelets,
AST, hemoglobin, sodium, age, and the duration of PSC
diagnosis in years) and was able to accurately predict
decompensation compared with other traditional
methods (AUROC of 0.90 compared with 0.72 for MELD
and 0.85 for Mayo PSC risk score).

Similarly, ML was applied to a large international
database of patients with primary biliary cholangitis to
predict the outcome of liver-related death or trans-
plantation.57 ML identified 4 new subsets of patients
with primary biliary cholangitis with different pheno-
types and prognosis and highlighted that ursodeox-
ycholic acid–induced increase of albumin was associated
with improved transplant-free survival.

Hereditary hemochromatosis is associated with iron
accumulation in the liver, which if left untreated can result
in progression to cirrhosis and the development of HCC.58

Hence, early diagnosis is crucial and can be achieved by
using AI/ML approaches to heterogeneous large datasets.
In fact, a recent study tested 7 popular ML algorithms in
the Hemochromatosis and Iron Overload Screening
(HEIRS) cohort, which consists of 254 cases and 701
control subjects, to determine which combination of risk
factors and algorithm provided the best performance in
the diagnosis of hereditary hemochromatosis.59 The final
model was developed using extreme gradient boosting
and included the following variables: HFE C282Y homo-
zygosity, age, mean corpuscular volume, iron level, serum
ferritin level, transferrin saturation, and unsaturated iron-
binding capacity. The AUROC for the new model was
0.94 and outperformed the traditional iron overload
screening (IRON) tool (AUROC of 0.60).

Alcohol-related liver disease (ALD) is now the leading
indication for liver transplantation in the United States60

and most patients are diagnosed after decompensation.61

Therefore, the identification of ALD at an earlier stage
could provide the opportunity to prevent disease pro-
gression through alcohol cessation treatment programs
and the management of metabolic comorbidities, such as
obesity and type 2 diabetes. Niu et al62 explored the use
of mass spectrometry/plasma proteomics supported by
ML to identify biomarkers for the diagnosis and prog-
nostication of early ALD. The ML models selected a panel
of proteins that detected significant fibrosis with high
accuracy (AUROC of 0.92) and outperformed standard-
of-care clinical tests, such as the FIB-4 index and APRI.
The same proteomic-based panel was predictive of the
development of major adverse liver outcomes and
overall mortality. Another study from Denmark used a
novel AI approach to identify significant fibrosis in
populations with low prevalence.63 The authors used
routine clinical variables that were available in a pro-
spective cohort of 3352 asymptomatic subjects, of whom
35% were at risk for ALD. The AI models accurately
identified patients with elevated liver stiffness more than
8 kPa (AUC of 0.86–0.94) and were superior to
conventional blood-based indices (AUC, 0.60–0.76:
P < .01).

Challenges to the Use of Artificial
Intelligence in Hepatology and
Immediate Research Priorities

Despite the great potential for AI-based models to
improve care for patients with liver disease, several
challenges need to be addressed before transitioning
these models from research to bedside. There is a rising
concern that applying computer algorithms in health
care may introduce and further amplify health inequities
and biases against vulnerable populations.64 Several
biases can be introduced through AI algorithms including
biases related to the selection of the clinical research
problem, biases in data collection and variable selection,
and biases in algorithm development and postdevelop-
ment use.65

To increase equity in AI use in health care, tools
need to be developed to debias data collection, model
training and output, and clinical application. Engaging
health equity experts early in the process of algorithm
development is of utmost importance. In addition,
ethical frameworks and regulatory standards need to
be developed by the Food and Drug Administration
and other agencies, such as the mandatory reporting of
the racial and socioeconomic status of the patient
population used in the AI model development. This
will ensure adequate representation of certain minor-
ities and the generalizability of the results. The ideal
scenario is the development of an augmented intelli-
gence approach that combines the physician decision
making with the AI tools to eliminate bias and ensure
health equity.66

To fully implement AI in hepatology, prospective AI-
based randomized clinical trials are necessary to un-
equivocally demonstrate the added value of AI models in
improving clinical outcomes for patients. In the endos-
copy field, several trials have demonstrated the impact of
computer-aided algorithms on increasing polyp and ad-
enoma detection rates during colonoscopy.67
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In conclusion, we firmly believe that AI/ML models
will play an integral part in the identification and man-
agement of liver diseases in the near future. Therefore,
providing adequate training for practicing physicians on
the concepts of AI and how to interpret the output of AI
models is of paramount importance. In addition, in-
vestments in health service infrastructure, data safety,
and ethical studies of AI are required to generate the
level of trust with physicians and patient to accepted AI-
augmented clinical decision making.
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