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Abstract
Objectives: Parenteral nutrition (PN) is used for patients of varying ages with
intestinal failure to supplement calories. Premature newborns with low birth
weight are at a high risk for developing PN associated liver disease (PNALD)
including steatosis, cholestasis, and gallbladder sludge/stones. To optimize
nutrition regimens, models are required to predict PNALD.
Methods: We have exploited induced pluripotent stem cell derived liver
organoids to provide a testing platform for PNALD. Liver organoids mimic the
developing liver and contain the different hepatic cell types. The organoids
have an early postnatal maturity making them a suitable model for premature
newborns. To mimic PN treatment we used medium supplemented with either
clinoleic (80% olive oil/20% soybean oil) or intralipid (100% soybean oil) for
7 days.
Results: Homogenous HNF4a staining was found in all organoids and PN
treatments caused accumulation of lipids in hepatocytes. Organoids exhibited
a dose dependent decrease in CYP3A4 activity and expression of hepatocyte
functional genes. The lipid emulsions did not affect overall organoid viability
and glucose levels had no contributory effect to the observed results.
Conclusions: Liver organoids could be utilized as a potential screening
platform for the development of new, less hepatotoxic PN solutions. Both lipid
treatments caused hepatic lipid accumulation, a significant decrease in
CYP3A4 activity and a decrease in the RNA levels of both CYP3A4 and
CYP1A2 in a dose dependent manner. The presence of high glucose had no
additive effect, while Clinoleic at high dose, caused significant upregulation of
interleukin 6 and TLR4 expression.
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1 | INTRODUCTION

Patients of varying ages with intestinal failure can present
with malabsorption, leading to micronutrient deficiencies,
to combat these calories are delivered intravenously
through parenteral nutrition (PN).1,2 Unfortunately some
patients develop PN associated liver disease (PNALD), a
liver dysfunction caused by PN use.3 There are three
types of PNALD, including steatosis, cholestasis, and
gallbladder sludge/stones. Premature new‐borns with low
birth weight are at a special risk for PNALD.1 Necrotizing
enterocolitis, believed to be driven by both dietary and
bacterial factors, is a serious gastrointestinal disease in
neonates.4,5 Infants who experience this often have to
undergo surgery for small‐bowel resection or proximal
jejunostomy, and depend longer on PN,6 increasing the
chances of developing PNALD. In addition to PN
treatment time, its composition has been related to
complications,7 in regard to the source of fatty acids
and the delivery.2 Mouse models are often used to study
PN effects,8–10 even though there are differences
between mice and humans which have to be taken into
account when testing PN, for example, humans express
four, and mice express six cytochrome P450 3A
(CYP3A) isoforms.11 This is very relevant since CYPs
are involved in the metabolism of 70−80% of all clinically
used drugs.12,13 At the same time, access to human
primary hepatocytes is limited, combined with the inability
to culture human primary hepatocytes long term,14

resulting in loss of metabolic function over time.15,16

Even though it is possible to expand liver progenitor cells
in vitro, these hepatocytes do not recapitulate the
complexity of an organ.17

Our group has successfully established a protocol
to differentiate human induced pluripotent stem cells
(iPSCs) to liver organoids (hLOs).18 A strength of iPSC

technology is the ability to propagate the stem cells
almost indefinitely19 and they do not have the ethical
baggage associated with embryonic stem cells.20 Our
protocol is scalable, is growth factor and extracellular
matrix independent thus providing a low cost solution
for the production of complex liver organoids that
exhibit liver like functions.18 These hLOs are especially
suitable for the investigation of PN associated effects
because they display hepatic cellular diversity, includ-
ing the presence of hepatocytes, hepatic stellate cells,
Kupffer cells, and endothelial cells, recapitulating the

What is Known

• Infants receiving parenteral nutrition (PN) are
at risk of developing PN associated liver
disease (PNALD) which include steatosis,
cholestasis, and gallbladder sludge/stones.

• Composition of lipid emulsions affect risk of
PNALD.

What is New

• Induced pluripotent stem cell (iPSC) derived
liver organoids can provide a testing platform
for PN.

• High concentrations of both intralipid and
clinoleic decreased Cytochrome P450 3A4
(CYP3A4) activity.

• High concentrations of intralipid and clinoleic
reduced the expression of CYP1A2 and
CYP3A4 RNA.

• High concentrations of clinoleic caused signifi-
cant upregulation of interleukin 6 expression.
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cellular complexity of the organ. They express glutamine
synthetase, which is absent from foetal hepatocytes,
indicating that our organoids are in a developmental
stage past the fetal liver. Importantly, they have both
basal and inducible CYP1A2 and CYP3A4 making them
relevant for drug testing.21‐23 The aim of this study was to
assess the utility of hiPSC derived hLOs to model
PNALD. To achieve this we tested the PNs intralipid
(Fresenius Kabi), 100% lipid, derived solely from soybean
oil, and clinoleic (Baxter), a lipid emulsion composed of
olive oil (80%)/soybean oil (20%).24 We assessed a
number of parameters which included lipid droplet
accumulation (steatosis), effect of PN on CYP activity
and transcription, viability of the organoids under different
lipid concentrations, high glucose and assessment of
proinflammatory markers.

2 | METHODS

2.1 | Pluripotent stem cell culture

The human iPSC line AG27 (reprogrammed using
retrovirus from AG05836B fibroblasts, obtained from
Coriell Cell Repositories) was used for the experi-
ments.25,26 Human iPSCs were maintained under
feeder free conditions on geltrex (Life Technologies)
or recombinant vitronectin (Life Technologies) coated
tissue culture plates using Essential 8 medium made in
house as described previously.27

2.2 | Liver organoid differentiation

Liver organoids were differentiated based on the
protocol from Harrison et al.18

2.3 | Lipid emulsion treatment of liver
organoids

Organoids were cultured in L15 medium18 with either
0.45 g/L (low) or 4.5 g/L (high) glucose or no addition.
L15 medium was also supplemented with either
clinoleic or intralipid with both high and low glucose.
Organoids were maintained under these conditions for
7 days in nonadherent six‐well plates on a shaker at
70 rpm in an incubator at 37°C and 5% CO2, with
medium changes every 48 h. The calculation for the
amount of lipid supplement is based on a 2000 g
neonate with 160mL of blood. For clinoleic a rate of
0.05mL per minute for the first 10−30min with 200mg/
mL concentration in the infusion bag, equals 300mg of
lipids administered in first 30min, meaning 1.875mg/
mL lipid concentration in the newborn.28 When extra-
polated to cell culture this gives 0.94% lipids in the

medium. The concentration of intralipid is 200mg/mL
and 200mg per minute administered in the first 30min,
the final blood concentration is 12.5 mg/ml in the
newborn29 resulting in 6.25% of lipid in the cell culture
medium. Based on this we used 0.94%, an intermedi-
ate concentration of 3.5% and 6.25% to show the
effects of lipid concentration on the liver organoids.

2.4 | CYP3A4 activity assay

After 7 days of culture in the lipid emulsions, the
organoids were collected and washed‐twice with L15
differentiation medium before resuspension in a half
volume of the same, samples were then divided into
four technical replicates. The Promega P450‐Glo™
CYP3A4 Assay with Luciferin‐IPA (V9002) was per-
formed according to the manufacturer's instructions.
Wells without organoids were measured to determine
background levels of detection and were subtracted
from the wells with organoids.

2.5 | CYP1A2 activity assay

After 7 days of culture in the lipid emulsions, the
organoids were collected and washed with L15
differentiation medium before resuspension in a half
volume of PBS with magnesium and calcium, contain-
ing 3mM salicylamide, samples were then divided into
four technical replicates. The Promega P450‐Glo™
CYP1A2 Assay (V8421) was performed according to
the manufacturer's instructions. Wells without orga-
noids were measured to determine background levels
of detection and were subtracted from the wells with
organoids.

2.6 | Immunofluorescence

Samples were fixed at room temperature for 45min
with 4% PFA. 10% Goat serum (G9023, Sigma) was
used for blocking in PBS with 0.1% Triton (PBS Triton)
for 1 h, and incubation with primary antibody in 5% goat
serum in PBS Triton over night at 4°C. The samples
were washed three times for 10min in PBS Triton. The
secondary antibody diluted in 1% goat serum (G9023,
Sigma) in PBS Triton was added for 1 h at 37°C and
washed for 1 h afterwards in PBS Triton. For a list of all
antibodies, see Table S1.

2.7 | Bodipy staining and live imaging

After 6 days of culture in the different lipid emulsions,
a 0.5 mL aliquot of suspension was taken, washed
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three times in L15 differentiation medium and then
incubated in a final concentration of 3.8 mM BODIPY
493/503 (Thermofisher, D3922) for 30 min in the
cell culture incubator. Organoids were then washed
three more times in L15 differentiation medium and
one drop of NucBlue DNA counterstain (Thermofisher,
R37605) was added. Cells were then imaged on an
Andor Dragonfly spinning disk confocal microscope.

2.8 | Reverse transcription quantitative
real time polymerase chain reaction
(RT‐qPCR) gene expression analysis

Organoids were collected in TRI Reagent® (T9424,
Sigma‐Aldrich) and RNA was isolated according to
the manufacturer's instructions and RNA was
quantified using the NanoDrop ND‐1000 Spectro-
photometer System (NanoDrop). One microgram of
RNA was converted to cDNA using the High‐
capacity cDNA Reverse Transcription kit (Life
Technologies). Commercially available validated
TaqManTM gene expression assays were used with
the BioRad SsoAdvanced Universal Probes Super-
mix (#1725284). The RT‐qPCR was performed
using TaqMan Reagents (Life Technologies) with
the only modification being that the reaction volume
was reduced from 20 to 15 μL. In all cases a
minimum of four biological replicates were analyzed
using 5 ng of cDNA per reaction. In all cases three
technical replicates were performed for all samples/
genes. In all cases gene expression was normalized
to (beta‐actin) ACTB. Data are presented as the
average of four independent experiments ± the
standard deviation. All TaqManTM gene expression
assays are presented in Table S2.

2.9 | Statistical analysis

Analysis was carried out using Graphpad Prism (version
10.1). Statistical significance was determined using
ordinary one‐way analysis of variance and Tukey's and
Dunnett's multiple comparison tests to compare means.
Stars delineate significant results as shown: *p≤ 0.05,
**p≤ 0.01, ***p≤ 0.001, ****p≤ 0.0001.

2.9.1 | Ethical approval information

The human iPSCs line AG27, is registered on the
hPSCreg‐UIOi001‐A. The parental fibroblast line
AG05836B was obtained from the Coriell Cell Reposi-
tories and reprogramed into hiPSCs and characterized
as previously described in.30 All ethical approvals are in
place.

3 | RESULTS

3.1 | Assessing if PN impinges liver
organoid function

To investigate whether liver organoids could be utilized
as a testing platform for PN, we first generated iPSCs
derived hLOs. We validated the hLOs by staining with
HNF4a (hepatic nuclear factor 4) which is expressed in
the hepatocytes (Figure 1A). Next, the hLOs were
treated with two commercial lipid solutions (intralipid
and clinoleic), at either 0.94% or 6.25% final concen-
tration in the media. First, we explored if lipid droplet
accumulation occurred in hLOs after 6 days treatment.
We observed a dose dependent accumulation of lipid
under both treatments as compared to control
(Figure 1B). Next, the hLOs were either cultured in
maintenance medium (L15 for control organoids) or
L15 supplemented with either clinoleic or intralipid, at
either 0.94% or 6.25%. After 7 days treatment, RNA
was isolated, and RT‐qPCR performed. Of note, the
hLOs varied in size (Figure 1A), but in all experiments
the control organoids (L15) expressed HNF4a, albu-
min, SERPINA (alpha‐1 antitrypsin), and AT3 (SER-
PINC/antithrombin) at comparable levels (Figure 1C).
On treatment with both clinoleic and intralipid, the gene
expression levels at the 0.94% treatment group saw a
marginal change in levels of HNF4a and A1AT but
these were not significant while a small but significant
decrease in expression of ALB and AT3 where
observed (Figure 1C). However, at the higher concen-
tration of lipid treatment (6.25%) we observed signifi-
cantly decreased gene expression levels in all groups,
HNF4a, ALB, and A1AT and AT3 (Figure 1C). Next, we
wanted to ensure that the observed decrease in gene
expression was not a function of cell death/loss of
viability. So, we looked at total ATP to assess the effect
of the PN treatments on cell viability. Interestingly, we
observed no significant changes between the control
and all PN treatment groups (Figure 1D). PN is also
supplemented with glucose along with other trace
element, with supplementation of up to 18 g/kg being
tolerated.31 We investigated the effect of high glucose
alone and in combination with the PN groups on cell
viability. Again, we observed no significant changes in
cell viability, indicating that the treatment had no impact
on cell viability (Figure S1).

3.2 | Do lipid emulsions influence de
novo lipogenesis (DNL)?

DNL plays an essential role in low‐birth‐weight infants
because they have a high energy demand for growth
which is met either with triglycerides from diet or from
DNL.32 Moreover, lipid emulsion composition might
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F IGURE 1 (See caption on next page).
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influence lipogenesis33 and we wanted to assess
whether our organoid system was suitable for studying
the effect of lipid emulsions on DNL. We assessed
markers of DNL with RT‐qPCR; In active sites of DNL,
the transcription factor MLXIPL/CHREBP (MLX Inter-
acting Protein Like/carbohydrate‐responsive element‐
binding protein) is expressed34 and we observed
upregulation in the 0.94% PN treatment conditions
(Figure 2A). However, on challenge with the high PN
treatments (6.25%), we observed a significant down
regulation of MLXIPL/CHREBP. Among the target
genes of MLXIPL/CHREBP are fatty acid synthase
(FASN), stearoyl CoA desaturase‐1 gene (SCD‐1), and
ATP‐citrate lyase (ACLY).35 Interestingly, these DNL

markers were not significantly affected by any of the
treatments, apart from ACLY where we observed an
increase in expression (Figure 2A). We also assessed
mRNA levels of the scavenger receptor CD36,36 it
showed an upwards trend but was not significant
(Figure 2B).

3.3 | Effect of PN on the cytochrome
p450s

PN has been studied for its effect on cytochrome
p450s (CYP), for example, cholesterol 7a‐hydroxylase
(CYP7A1) was found to be suppressed in infants

F IGURE 2 Effects of parenteral nutrition treatment on de novo lipogenesis in liver organoids. (A) RT‐qPCR of de novo lipogenesis markers,
MLXIPL, ACLY, and (B) FASN, SCD and CD36 after 7 days of PN treatment. Normalized to B‐actin, n = 4 independent experiments. Error bars
show standard deviation. p Value, *(p < 0.05), **(p < 0.01), ***(p < 0.001), ****(p < 0.0001).

F IGURE 1 Effects of parenteral nutrition on hepatocyte marker expression and cell viability. (A) Immunostaining of liver organoids before PN
treatment. HNF4a in green, Hoechst in blue. 500 µm scale bar. (B) Intracellular fat deposition in liver organoids after PN treatment. Live imaging
of BODIPY 493/503 staining (green) and Hoechst (blue), showing neutral lipids and nuclei respectively, in organoids treated with 0.94% or
6.25% intralipid or clinoleic acid for 6 days. Bottom row shows higher magnification. Scale bar represents 200 µm in the top row and 50 µm in the
bottom row. (C) RT‐qPCR of hepatocyte gene expression markers after parenteral nutrition (PN) treatment for 7 days with either clinoleic or
intralipid in comparison to untreated/control (L15). HNF4a, albumin (ALB), alpha ‐1‐antitrypsin (A1AT), and antithrombin (AT3) normalized to
B‐actin, n = 4 independent experiments. (D) ATP measured in organoids after PN treatment for 7 days, n = 4 independent experiments. Error
bars show standard deviation. p value, *(p < 0.05), **(p < 0.01), ***(p < 0.001), ****(p < 0.0001).
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requiring prolonged PN.37 In a mouse study intralipid
was shown to reduce the expression of genes involved
in drug metabolism, including Cyp3a11, (homolog to
human cytochrome P450 Family 3 Subfamily A
Member 4 (CYP3A4)). Consequently, we explored the
effects of PN treatment on CYP450 gene expression
and activity in liver organoids. Organoids were treated
with either intralipid or clinoleic (0.94% or 6.25%) for
7 days. We first looked at the gene expression level of
CYP3A4 and CYP1A2, where we observed a significant
reduction in the gene expression level of both CYPs at
the highest concentration (6.25%), but at the lower
concentration (0.94%) we a saw significant reduction in
the CYP3A4 and CYP1A2 RNA levels with clinoleic
treatment, but intralipid only gave a significant reduc-
tion in CYP3A4. However, the trend for intralipid
(0.94%) treated hLOs for CYP1A2 RNA levels was
down but not significant (Figure 3A). We next assessed
the CYP activity, first CYP3A4 activity was assayed at
Day 7 post‐treatment with either intralipid or clinoleic
(0.94%, 3.5%, or 6.25%) (Figure 3B). The CYP3A4
activity was significantly decreased at the highest
concentration (6.25%) with an overall downward trend
in a dose dependent manner, albeit not statistically
significant at the lower concentrations. We observed a
similar trend for CYP1A2 activity with the same
treatments but the observed changes between control
and PN treatments groups were not significant
(Figure 3B). We also assessed the effect of high
glucose (PN is also supplemented with high glucose)
applied to the same lipid formulations described above
on CYP1A2 and CYP3A4 activity. In short, we
observed the same pattern as above with significant
inhibition of CYP3A4 activity at the highest PN
concentration (6.25%) and an overall downward trend
in a dose dependent manner (Figure S1). While for
CYP1A2 we observed the same trend as above of
reduced CYP1A2 activity, but this was not statistically
significant (Figure S1).

3.4 | PN effect on inflammation and
fibrosis

It is well acknowledged that lipids can invoke an
inflammatory response in the liver and other tissues.38

To address this, we investigated if PN formulas applied
to hLOs had any effect on inflammatory or fibrotic
markers. First, we looked at the toll‐like receptor 4
(TLR4) and interleukin 6 (IL6) levels of expression,
where we observed an upward trend in expression for
all treatment, but was not statistically significant,
however the 6.25% clinoleic treatment we observed
the significant upregulation of both TLR4 and IL6
expression (Figure 4A,B and Figure S2). We also
assessed several fibrotic markers including smooth
muscle actin (aSMA), collagen 1A1 (COL1A1), and

Transforming growth factor beta (TGF‐b), however in
all cases we did not observe any significant changes in
expression for any of the test regimes (Figure 4C−E).

4 | DISCUSSION

PNALD is a severe complication after PN in infants and
in the efforts to optimize PN relevant testing, new
models are required. Using hiPSCs derived hLOs we
demonstrated that PN treatment with clinoleic or
intralipid did not affect cell viability even with high
glucose, indicating that our calculated physiologically
relevant PN concentrations are tolerated by the hLOs
(Figure 1D). We also observed accumulation of lipid

F IGURE 3 Effects of parenteral nutrition treatment of liver
organoids on CYP450 gene expression and activity. RT‐qPCR of (A)
CYP3A4 and CYP1A2 gene expression in liver organoids treated with
0.94% or 6.25% intralipid or clinoleic for 7 days in comparison to
untreated control organoids. Normalized to B‐actin, n = 4
independent experiments. Error bars show standard deviation.
p Value, *(p < 0.05), **(p < 0.01), **(p < 0.001), ****(p < 0.0001).
(B) Luminescence based CYP450 assays showing CYP3A4 and
CYP1A2 activity levels in the liver organoids treated with 0.94%, 3.
5%, or 6.25% intralipid or clinoleic for 7 days in comparison to
untreated control organoids. n = 4 independent experiments. Error
bars show standard deviation. p Value, *(p < .05), **(p < 0.01),
***(p < 0.001), ****(p < 0.0001).
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droplets in hLOs in a dose dependent manner,
presenting with a nonalcoholic fatty liver disease
(NAFLD) like appearance (Figure 1B). Additionally,
we observed a dose dependent decrease in the
expression of the hepatic markers HNF4a, ALB,
A1AT and AT3. This has been observed in a number
of models, including rabbit under a high fat diet, where
albumin mRNA levels are reduced significantly.39 In
addition, HNF4a, a master regulator of liver metabo-
lism, is down regulated in fatty liver diseases such as
NAFLD and diabetes.40–42 This may account for the
decrease in A1AT and AT3 expression, which has been
shown to regulate the expression of these factors.43,44

The liver plays a role in the regulation of lipid
metabolism/metabolic function and disruption of these
can lead to obesity, metabolic syndrome and
NAFLD,45‐51 making the analysis of DNL and regulation
of lipid metabolism important, as fat infiltration in the
liver is implicated in the onset of PNALD. On assess-
ment of DNL, we observed that 0.94% PN treatments
marginally increased MLXIPL/CHREBP levels, but this
was not significant. Contrary, reduced expression was
observed for high dose 6.25% PN treatment, for both

intralipid and clinoleic. It has been shown that
diminishing MLXIPL, reduced lipid accumulation.52

One could speculate that this maybe a feedback loop
to antagonize the observed lipid accumulation. We
found a dose dependent increase in expression of
ACLY in keeping with the induction of ACLY by free
fatty acid.53 For FASN, SCD, and CD36, we did not
observe any significant increase in expression. This is
in alignment with the diminishing MLXIPL levels, as
MLXIPL has been shown to regulate genes involved in
DNL such as FASN and SCD1.54

There are links connecting liver disease with DNL
and changes in CYP450 activity. Reduced CYP3A4
protein expression has been observed in NAFLD and
diabetes mellitus.21,55 We investigated how two key
CYPs (1A2 and 3A4) were affected by PN treatments at
the transcriptional level, observing PN treatment dose
dependently reduced mRNA levels. CYP3A4 activity
was significantly affected at the high lipid concentration
(both PN treatments at 6.25%). While CYP1A2 activity
showed a downward trend in activity, but not statisti-
cally significant. Interestingly, a study investigating how
high fat diets in mice effected the drug metabolizing

F IGURE 4 Effects of parenteral nutrition treatment of liver organoids on markers of inflammation and fibrosis. RT‐qPCR of (A) IL6, (B) TLR4,
(C) aSMA, (D) COL1A1, and (E) TGFb gene expression in liver organoids treated with 0.94% or 6.25% intralipid or clinoleic for 7 days in
comparison to untreated control organoids. Normalized to B‐actin, n = 4 independent experiments. Error bars show standard deviation. p Value,
*(p < 0.05), **(p < 0.01), ***(p < 0.001), ****(p < 0.0001).
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enzymes (Cyps) observed reduced Cyp1a2 but
unfortunately the activity levels were not assessed.56

The consequences of lowered CYP3A4 activity can be
severe in newborns, as it has not yet reached adult
levels, taking 3 years to do so.57–59 Therefore, drugs
administered and metabolized by CYP3A4 might not
have the intended effect i.e., prodrugs will have
delayed activity due to lower CYP3A4 activity. Another
potential problem is the genetic background of a patient
and the expression of other CYPs, for example,
CYP3A5. It can represent up to 50% of total hepatic
CYP3A protein,60,61 but it is only detected in the livers
of 10–30% of adult Caucasians due to genetic
polymorphism.62–66 A reduction of CYP3A4 activity
could be deleterious in a combination with the absence
of CYP3A5.

Additionally down regulation of CYP3A4 can have
serious consequences, for liver health in association
with cholestasis.67,68 CYP3A4 catalyses the hydroxyl-
ation of bile acids, thereby increasing the hydrophilicity
and lowering toxicity.68 As a response to cholestasis
CYP3A4 is up regulated69 to fulfill its role in bile acid
detoxification, but bile acids can directly inhibit CYP3A4
due to their detergent effect, creating a vicious circle.
Cholestasis has been observed in infants (40–60%)
who receive long‐term PN,70 which can progress to
cirrhosis and liver failure.3

We observed that 6.25% clinoleic treatment caused
significant upregulation of TLR4 and IL6 in the hLOs,
however the other PN treatment groups caused
upregulation, but was not significant (Figure 4A,B).
This is not unexpected as TLR4 signaling through
NFkB and MAPK leads to the production of proin-
flammatory cytokines such as IL‐6.71 Also, this could
contribute to the observed down regulation of CYP3A4
as CYPs are down regulated in response to inflamma-
tion.72 Interestingly, other cytokines affect the expres-
sion of other CYPs, in the case of CYP1A2 TNF‐alpha
was shown to be very potent.73 This would be an
interesting avenue to explore, with regard to cytokine
profiling and the effect on expression of CYPs.

IL6 is also presumed to be a proinflammatory
cytokine contributing to obesity‐driven insulin resist-
ance74,75 and a regulator of immune function.76

However, another role for IL6 is emerging as a potent
regulator of fat metabolism in adipose and muscle
tissues.77,78 But paradoxically increased plasma levels
of IL6 correlate with metabolic syndrome.74,79,80 A
study by Vida and colleagues,81 show the levels and
duration of IL6 are important. For example, a moderate
increase in IL6 maintains fatty acid β‐oxidation,
balancing the increased accumulation of liver fatty
acids. But high levels of IL6, associated with obese
patients, promote lipogenesis and further steatosis/
NAFLD progression. The differences in the levels of IL6
expression under intralipid and clinoleic PN treatments
may have important implications to patient outcome.

Infants who receive long‐term PN treatment can
progress to cirrhosis and liver failure.3 However, in our
hLO model, we did not observe elevation of fibrotic
markers. This is contrary to a study from Fitzgibbons
and colleagues,82 using liver biopsies from children
undergoing PN, where they observed PN‐associated
liver fibrosis. However, these patients had undergone
PN for 4.7 months (median duration). Our results can
be explained by the duration of treatment, as another
study showed PN treatments of <2 weeks presented
with no fibrosis, requiring 6 weeks treatment to develop
moderate‐to‐severe fibrosis.83 This warrants further
investigation in the context of acute (days) and chronic
(weeks) PN treatment in hLOs.

5 | CONCLUSION

A limitation of this study is that we only assessed the
effect of different intravenous lipid formulas and high
glucose, which had no contributory effect. But under
clinical use these lipid emulsions are co‐administered
with a plethora of other nutritional and non‐nutritional
components, including carbohydrates, amino acids,
polyvalent electrolytes as well as prescription drugs.
This is worthy of further future exploration to under-
stand the impact of these.

Our hLO model offers the possibility to investigate
how PN impacts overall liver functions and activities
such as the drug metabolizing enzymes. This poten-
tially will aid how prescription drugs are administered in
the context of CYP activity. Our model will potentially
allow a more personalized approach, for example by
generating hiPSC derived hLOs with different CYP
variants and assessing their activities under different
PN treatments. Another interesting area to further
develop is cytokine profiling upon PN treatment. This
would impact at several levels, including CYP activity
assessment, as well as the potential beneficial effects
of IL6 levels in the context of promotion of fatty acid β‐
oxidation, thus addressing increased lipid accumula-
tion. Our model could be fine‐tuned to identify the
sweet spot in PN delivery in the context of lipid levels
that promote moderate levels that are beneficial to the
patient. Finally, as we can culture our hLOs long term,
for many months,18,84 making it possible to study long
term PN treatments and the development of fibrosis. In
short, the described hLO model will aid the develop-
ment of safer PN treatments.
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