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Abstract
Objectives: Cholestasis in infancy poses a complex clinical conundrum for
pediatric hepatologists, warranting timely diagnosis, especially for genetic
diseases. This study aims to create machine learning (ML)‐based predic-
tion models, referred to as Jaundice Diagnosis Easy for Baby (JADE‐B), to
identify the subjects prone to genetic causes of cholestasis.
Methods: We retrieved patient data from the Integrated Medical Database
at a university‐affiliated tertiary medical center from 2006 to 2018. Patients
with cholestatic disease were identified using liver‐disease‐specific
International Classification of Diseases codes. A total of 47 clinical and
laboratory parameters were used for ML for predicting a positive
genetic disease, defined by a disease‐specific genetic diagnosis matched
with phenotype. Four distinct classifiers: Logistic regression, XGBoost
(XGB), LightGBM (LGBM), and Random Forests were utilized to build the
models.
Results: From a patient pool of 1845, 1008 infants below 1 year of age
diagnosed with cholestatic liver disease were included in the analysis.
A comprehensive set of 47 pertinent clinical and laboratory features
was incorporated for training the ML models. We built five sets of
models (Model 1‐5), yielding an area under the receiver operating char-
acteristic curve of 0.869, 0.884, 0.855, 0.852, and 0.836, respectively. A
JADE‐B model was built using 20 simple and widely accessible clinical
parameters at disease onset, up to 1 month, to predict patients with genetic
disorders.
Conclusions: The machine learning model prioritizes cholestatic infants for
the allocation of genetic diagnostic tools and patient referrals, as well as
optimizes the utilization of genetic diagnostic resources.
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1 | INTRODUCTION

Neonatal or infantile cholestasis is the condition of
reduced bile formation or bile flow resulting from he-
patobiliary dysfunction or biliary tract obstruction.
Cholestasis is one of the most encountered liver dis-
eases worldwide, which is caused by inherited dis-
orders or secondary insults at all ages.1,2 More than
100 inherited and acquired etiologies can cause cho-
lestatic liver diseases.3 The clinical outcomes range
from self‐limited disease to liver failure that may be
indicated for liver transplantation. Recent advances in
genetic medicine and novel analytical tools such as
next‐generation sequencing and bioinformatics have
greatly accelerated the rates of genetic diagnosis and
the discovery of novel genetic disorders.4–6 However,
because of the diversity of etiologies of cholestasis and
the rarity of each genetic disorder, diagnosing infant
cholestasis remains one of the most challenging tasks
for clinicians and pediatric hepatologists.

Most cholestatic patients present with overlapping
symptoms, such as jaundice, clay stools, poor weight
gain, coagulopathy, and pruritus. However, the genetic
analysis tools cannot be applied to most patients at the
early stages of diseases among the large cohort of
jaundiced babies.6–8 Only a few centers worldwide
provide advanced genetic tests. Many patients are
diagnosed at advanced stages of diseases such as
cirrhosis or liver failure. The indication and algorithm of
genetic analysis in clinical settings are still controver-
sial. If we want to provide genetic analysis in the early
stages of diseases, we will need to offer this test to a
large number of patients. This is not practical in terms
of analysis capacity and a tremendous increment in the
medical cost for genetic tests.

Therefore, we think it is valuable and highly war-
ranted to develop a diagnostic algorithm to determine
who will be the priority patients for receiving genetic
tests in cholestatic diseases at the early stage of the
disease among a large number of patients. We have
previously published a scoring system for the diagnosis
of neonatal cholestasis caused by citrin deficiency,8

using common clinical parameters, and also published
the role of using a single marker (gamma‐glutamyl
transferase [GGT]) for the prediction of progressive
familial intrahepatic cholestasis.9 However, these

What is Known

• Due to the diversity of etiologies of cholesta-
sis and the rarity of each genetic disorder,
diagnosing infant cholestasis remains one of
the most challenging tasks for clinicians and
pediatric hepatologists.

• The indications and algorithm of genetic
analysis are still controversial.

What is New

• Our models empower clinicians to expedite
genetic testing for high‐risk cases by simpli-
fying the diagnostic process and optimizing
resource allocation.

• It utilizes 20 simple and widely accessible
clinical parameters to predict patients with
genetic disorders.

• This model benefits patients by making per-
sonalized treatment strategies.
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models are far from accurate enough to be used for the
selection of patients for genetic analysis.6

Conventional statistical methods or models, such as
logistic regression and Cox regression, have been applied
to detect linear correlation and risk stratification in the long
run. However, considering heterogeneous combinations
of clinical information and laboratory data, a more com-
prehensive model is needed for risk stratification and
providing individualized medical suggestions. Machine
learning (ML) can easily fulfill this need by providing
advanced algorithms and data analysis techniques that
enable more accurate predictions and personalized solu-
tions tailored to individual requirements. Moreover, it can
be trained to analyze complex nonlinear correlations
among variables.

Recently, ML has been used to investigate gastro-
intestinal diseases,10 as well as to predict hospital
mortality in African children with acute infections, which
is helpful in the hospital setting, especially in resource‐
limited areas.11 ML has also been used to develop
predictive models for chronic hepatitis B or C virus
infection, liver transplantation survival, and donor
matching.10,12,13 Currently, there are no reports of an
ML‐based diagnostic model or algorithm for cholestatic
patients to aid in predicting or selecting priority candi-
dates for advanced genetic tests.

The purpose of this study is to use data from
medical records to build prediction models and to
identify patterns that can inform forecasts about future
outcomes. In this study, we aim to use our database of
clinical data and genetic analysis results to develop
models for prioritizing patients for genetic analysis.

2 | METHODS

2.1 | Ethics statement

This study was approved by the Institutional Review
Board of NTUH (201912246RIND).

2.2 | Study participants and data
collection

From the National Taiwan University Hospital integrated
Medical Database (NTUH‐iMD), we have retrieved a total
of 1845 cases below 1 year of age with available liver
function tests and abdominal sonography from January
2006 to December 2018 (Figure 1). Among them, 1008
cases of cholestatic liver diseases were identified by the
criteria of: (1) patients who had been diagnosed with
International Classification of Diseases code related to
cholestatic liver disease or jaundice (Supporting Informa-
tion S3: Table 1); and (2) with direct‐bilirubin more than
1.0mg/dL and/or total‐bilirubin more than 1.5mg/dL at the
National Taiwan University Hospital.

The clinical medical information included gender,
gestational age, prematurity status, birth body weight, age
at onset of symptoms, use of total parental nutrition (PN)
during infancy, and abdominal ultrasonography. Clinical
parameters include serum levels of total and direct biliru-
bin, aspartate aminotransferase (AST), alanine amino-
transferase (ALT), alkaline phosphatase (ALP), GGT, and
cytomegalovirus (CMV) viral load. The laboratory param-
eters were recorded at baseline, 1, 3, 6, and 12 months
from baseline (b, p1m, p3m, p6m, p12m, eg, GGT p3m:
the GGT levels at 3 months from baseline). The abnormal
findings of abdominal ultrasonography included hepato-
megaly, splenomegaly, abnormal hepatic echogenicity,
liver cirrhosis, and ascites. The genetic diagnosis had
been performed based on clinical purpose, and a positive
genetic diagnosis was defined as patients with compatible
clinical phenotypes associated with the specific genetic
mutations detected.

2.3 | Model development

The research environment utilized Python version
3.8.10, LightGBM (LGBM) package version 3.3.2,
XGBoost version 1.4.2, and the scikit‐learn package
(version 1.0.2) for Logistic Regression and Random
Forest. The study cohort analyzed comprised 1008
cases. All personal information was de‐identified before
model development. A total of 47 clinical variables were
selected for model development to predict whether a
genetic disease was ultimately diagnosed. We used
stratified random sampling to split the data set into 70%
training and 30% testing sets.

Resampling, Synthesized Minority Oversampling
Technique, and Edited Nearest Neighbor methods
were applied due to the imbalanced data set. The
candidate ML models used were Logistic Regression,
Random Forest, XGBoost Classifier, and LGBM Clas-
sifier. Detailed information about the parameters used
for tuning the ML algorithms is listed in Supporting
Information S3: Table 2. We employed the median of
gestation age and onset age to substitute missing
values. For missing birth body weight data, the mean
value was utilized for imputation. Additionally, missing
values in time series data were replaced with the
closest available data points in time.

The performance of models using datasets from
different time points and analytical methods was
evaluated. The model with the earliest available data
and the highest AUC was selected as the Jaundice
Diagnosis Easy for Baby (JADE‐B) model. For ex-
ternal validation, retrospective data collected from
the medical records of 98 patients from three centers
were used, including Kyungpook National University
Children's Hospital, South Korea, Ramathibodi
Hospital, Thailand, and King Chulalongkorn Memorial
Hospital, Thailand.
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2.4 | Statistical analysis

To evaluate the differences in patients' characteristics
between patients with positive or negative diagnoses
for genetic diseases, we used the Mann–Whitney U
test for comparison. We calculated the area under the
receiver operating characteristic curve (AUROC),
accuracy, sensitivity, specificity, precision, and F1‐
score to evaluate the performance of each model.

The DeLong test is applied to compare classifica-
tion models, particularly in the medical field. This is
mainly because medical models are often evaluated
using AUC, and the DeLong test is specifically
designed to assess differences in AUC between mod-
els. Additionally, since medical data often does not
follow a normal distribution, the DeLong test's ability to
operate without the assumption of normality makes it
especially suitable for this type of data.

3 | RESULTS

3.1 | Baseline characteristics of all
participants

Figure 1 demonstrates the flow of this study. Through the
NTUH‐iMD, we identified a total of 1008 patients ad-
mitted to the Pediatrics Department of the National Tai-
wan University Hospital. Among these 1008 patients, 63
had been diagnosed as positive for genetic disease
during the follow‐up, including neonatal intrahepatic
cholestasis caused by citrin deficiency, Alagille

syndrome, progressive familial intrahepatic cholestasis,
and inborn errors of bile acid metabolism. The clinical
characteristics and baseline laboratory data of patients
with or without genetic diagnosis were shown in Sup-
porting Information S3: Table 3. Figure 2 shows the dif-
ferent courses of dynamic changes in liver function tests
between patients with and without genetic diseases.
Those with genetic diseases had higher direct bilirubin
(D‐Bil) levels at 12 months (1.90mg/dL vs. 0.87mg/dL,
p = 0.008), higher ALT at 6 and 12 months (p = 0.0028,
p < 0.0001), higher AST at 3, 6, and 12 months
(p = 0.018, p < 0.0001, and p < 0.0001), higher ALP at
baseline (p = 0.001), had older age at onset of jaundice
(0.38 vs. 0.25 years, p < 0.0001), more likely to be full
term (p = 0.002), and had a lower proportion of using
TPN (1.59% vs. 19.58%, p < 0.001).

3.2 | Model development

We built five prediction models using Logistic Regression,
Random Forest, XGBoost Classifier, and LGBM Classi-
fier. The workflow of model development by employing
different sub‐datasets was demonstrated in Figure S1.
The first model (Model 1, Supporting Information S3:
Table 4) used all 47 parameters with an AUC of 0.8688
(95% confidence interval [CI]: 0.76–0.95) and accuracy of
0.8515. The first laboratory value of each patient was
designated as “baseline data.” To increase the model
accuracy without decreasing the performance of the
model, we used a feature selection method. After feature
selection, the number of parameters of the second model

F IGURE 1 The study flow and the process of
machine learning. ICD, International
Classification of Diseases; JADE‐B, Jaundice
Diagnosis Easy for Baby; LGMB, LightGBM.

4 | TAI ET AL.
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(Model 2, Supporting Information S3: Table 4) decreased
from 47 to 15 features. The AUC and diagnostic accuracy
were 0.8838 (95% CI: 0.77–0.96) and 0.8944.

Next, we used selected parameters by using those
only in the first 3 months after disease onset in the third
model (Model 3, Supporting Information S3: Table 4). By
doing so, we could predict the genetic disease earlier than
the previous models. The AUC and diagnostic accuracy
were 0.8547 (95% CI: 0.74–0.94) and 0.8548, which were
comparable to the first two models. After feature selection,
the fourth model (Model 4, Supporting Information S3:
Table 4) was built with 20 features. The AUC and accuracy
were 0.8516 (95% CI: 0.76–0.93) and 0.8152.

To develop the earliest model for prediction within
1 month after initial presentation, we used the sub‐dataset
including the demographic features, laboratory markers
from baseline and 1 month, without ultrasonographic
findings. Model 5 (Supporting Information S3: Table 4)
was established by using 20 features. The AUC and
accuracy were 0.8358 (95% CI: 0.71–0.93) and 0.8251.

3.3 | Performance comparison

In Model 1, using all 47 variables, the Random Forest
model had a non‐inferior AUC and higher sensitivity
than the other three models (Figure 3, Supporting
Information S3: Table 4). No significant difference was
detected in the DeLong test among them.

In Model 2, after feature selection, the models of
Random Forest, XGBoost Classifier, and LGBM Classifier
had higher AUC performance than Logistic Regression.

The LGBM classifier model had the highest sensitivity
(0.9474) compared to the other three models.

Among all models for building Model 3, Random
Forest had the highest AUC value (0.8547), sensitivity
(0.8421), and F1‐score (0.4211), although delong test
showed no significant difference among them.

The model 4 used only 20 clinical features from dis-
ease onset to 3 months later and was processed with
feature selection. The models of Logistic Regression,
Random Forest, and XGBoost Classifier had similar per-
formance in AUC analysis, while Random Forest models
showed better performance in accuracy (0.8152), speci-
ficity (0.8134), precision (0.2319), and F1‐score (0.3636).

For clinical application, it is desired to use earlier
markers and widely accessible clinical laboratory
parameters for predicting cases needing genetic tests.
We then used data from within 1 month of presentation,
without ultrasonographic findings, to develop Model 5.
The model of Random Forest had the highest AUC
(0.8358), accuracy (0.8251), and specificity (0.8239)
than the models of Logistic Regression, XGBoost
Classifier, and LGBM Classifier.

3.4 | The JADE‐B model

Because a prediction model using markers at an earlier
disease stage is practically preferred, we chose the
Random Forest Model 5 as the suggested model for
predicting genetic disease, designated as the JADE‐B
model, using 20 parameters, including total and direct
bilirubin, AST, ALT, ALP, GGT, ALT from disease onset to

F IGURE 2 The dynamic changes of laboratory data at different time points and comparisons between patients with and without genetic
diseases (* p < 0.05, Mann–Whitney U test). ALT, alanine aminotransferase; AST, aspartate aminotransferase; D‐Bil, direct bilirubin; GGT,
gamma‐glutamyl transferase; T‐Bil, total bilirubin.
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1 month and clinical features (weblink for JADE‐B: https://
gi-genetic-predictor.streamlit.app/). This model can be
used to prioritize patients to receive genetic tests. The
sensitivity, specificity, positive predictive value, and neg-
ative predictive value were 0.8421, 0.8239, 0.2424, and
0.9873, respectively.

The JADE‐B model predicted that 21.8% of the
NTUH validation cases were likely related to genetically
cholestatic diseases. In other words, the model could
help avoid 78.2% of genetic tests. This model was
externally validated in 98 cases (with 36 cases with
positive genetic diseases) from Thailand and Korea,
achieving an AUC of 0.7115.

3.5 | Variable importance

Lundberg and Lee proposed SHapley Additive exPlana-
tion (SHAP) as a unified approach to analyze the output
of any ML models.14 It is widely accepted for the con-
sistent and accurate evaluation of the contribution of each
variable in different models.15 The importance of all
variables demonstrated by SHAP summary plots is
shown in Figure S2. Earlier onset age, prematurity, lower
birth body weight, and parental nutrition were less likely to
be associated with genetic disease. The higher level of
direct bilirubin with prolonged duration implies a higher
possibility of genetic cholestatic liver disease.

F IGURE 3 (A–F) The comparison of AUC of Models 1 to 5 by different classifiers. AUC, area under the curve; LGMB, LightGBM.

6 | TAI ET AL.
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4 | DISCUSSIONS

Our study is the first to develop an ML model, JADE‐B, to
identify infants likely to have a genetic liver disease. We
propose this model to assist clinical settings in prioritizing
genetic testing for cholestatic infants, among the large
populations of jaundiced or cholestatic infants. In addition,
we have minimized the number of clinical parameters
needed in this model, which are widely accessible in most
hospitals. This feature increased the usefulness and fea-
sibility of using the JADE‐B model.

Due to the immature bile metabolic function during the
first year of life, as well as many other metabolic functions
under development, the causes of neonatal cholestasis
are highly diverse. The first step of the usual diagnostic
process is to identify or exclude extrahepatic cholestasis,
mainly biliary atresia or choledochal cyst, to determine
whether the infant needs intraoperative cholangiography
or operation. Next, etiologies of intrahepatic cholestasis
will be taken into consideration, including infection, pre-
maturity, parenteral nutrition, hypoxic insults, monogenic
diseases consisting of multiple metabolic disorders, ductal
malformations, as well as endocrine and mitochondrial
disorders. The diagnosis relies on detailed history taking,
physical examination, numerous blood and urine tests,
imaging studies, and liver biopsy for differential diagnosis.
Owing to advancements in molecular diagnosis, the role
of molecular diagnosis is changing since it is less time‐
consuming and has less expensive costs nowadays.
Evaluation of neonatal cholestasis has evolved to em-
phasize the important role of genetic testing. New diag-
nostic algorithms incorporating genetic testing have been
proposed for different genetic backgrounds and targeted
diseases.16,17 It may facilitate the earlier recognition of
common and rare cholestatic liver diseases. Physicians
can provide precision medicine regarding specific target-
ing therapies and inform the family of possible long‐term
clinical outcomes.

Despite the advantages of genetic testing in managing
cholestatic disease in infancy, significant challenges
remain. Because of the large population of young infants
with jaundice and cholestatic liver diseases and the non-
specific clinical manifestations in the majority of patients,
the demand for genetic testing is very high. The prices of
whole‐exome sequencing range from $500 to $7500, and
those of whole‐genome sequencing range from $1000 to
$16,000, according to the website of the global network of
laboratories (Genohub: https://genohub.com/).18 How-
ever, the price may not be affordable globally for all par-
ents with cholestatic infants, and most healthcare systems
do not cover the expense of genetic diagnosis. Not only is
the budget an issue, but also the facilities, equipment, and
personnel expertise required for testing, bioinformatic
analysis, and maintaining the system are not widely
accessible in many parts of the world. Even in areas with
available resources, the testing capacity may not provide
service for all cholestatic infants. Thus, there is an urgent

need to establish a predictive tool to select specific sub-
jects with genetic cholestatic diseases.

In this study, we used several models to establish the
prediction model. Model 1 employed Random Forest with
47 parameters, collecting clinical data from disease onset
up to 12 months, and achieved an AUC of 0.8688 and a
sensitivity of 0.8421, respectively. After feature selection,
Model 2 condensed the parameters from 47 to 15. It
included GGT, AST, ALT, ALP, total and direct bilirubin,
and so on. Some parameters up to 12 months were used.
The AUC and F1 were better than Model 1; the sensitivity
decreased to 0.7895 with an elevation of specificity to
0.9014. The performance of both models is good. How-
ever, these two models can only be applied 1 year after
disease onset. For some genetic liver diseases, prompt
diagnosis is essential to benefit the patients and their
families. Therefore, we developed Model 3 by Random
Forest using features within 3 months after onset, using
33 clinical parameters. After feature selection, Model 4
used only 20 clinical variables. Model 5 (designated as
JADE‐B model) condensed 20 clinical parameters within
1 month after onset, excluding ultrasonographic findings.
The AUC, sensitivity, and specificity were 0.8358, 0.8421,
and 0.8239, respectively. Compared to Model 4, Model 5
had a similar AUC and sensitivity. Fewer variables at the
early stage of disease are practically preferable by phy-
sicians for diagnosis prediction, and can save the cost of
medical care. Our model provides good performance, with
a positive prediction value of 0.2424, and a high negative
prediction value of 0.9873, which is considered suitable for
screening tool in clinical settings, comparable with previ-
ously large‐scale bilirubin screening for biliary atresia with
a positive predictive value of 5.9% and a negative pre-
dictive value of 100.0%.19 By promoting simple and
practically applicable prediction models for cholestatic
genetic liver diseases, we can prioritize those patients for
timely genetic diagnostic testing and optimize the alloca-
tion of genetic diagnostic resources.

When facing a cholestatic infant, it is crucial to prioritize
diagnosing patients with biliary atresia as early as possible.
Any newly developed diagnostic algorithm or prediction
model cannot take the risk of delaying the diagnosis of
biliary atresia, as postponing the Kasai operation will result
in unfavorable outcomes and long‐term complications.
Thus, the causes of extrahepatic cholestasis, such as bil-
iary atresia and choledochal cyst, should be identified first
using currently established diagnostic methods. The pre-
diction model should not overshadow established diag-
nostic protocols for conditions that require immediate
intervention. Depending on the resource availability, the
JADE‐B prediction model can also be applied to all infants
with cholestasis, or specifically to those with unfavorable
clinical course, such as progressive cholestasis, liver cir-
rhosis, or failure to thrive. Early recognition of infants more
likely to have genetic cholestatic diseases, along with early
genetic testing and diagnosis confirmation, can assist cli-
nicians in making prompt management decisions,

TAI ET AL. | 7
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predicting long‐term outcomes. We have proposed a
simplified diagram illustrating the use of an ML prediction
model in infantile cholestasis (Figure 4).

Clinical hepatologists or physicians usually inte-
grate clinical information and variable laboratory data
from different sources to make a diagnosis, predict
long‐term prognosis, and suggest treatment options.
Traditionally, laboratory parameters such as GGT or
clinical scores have been used to aid medical decision‐
making.5,8,9 In recent years, progress in ML can extract
clinically relevant information from diverse and complex
datasets and help physicians make essential judg-
ments.20 The reported applications included liver stiff-
ness prediction from clinical data and images,10,12,21

diagnosis of fatty liver disease,22–24 histologic and
radiologic diagnosis of hepatocellular carcinoma,25–27

prognosis evaluation for hepatocellular carcinoma,27–31

recipient selection for liver transplantation.,10,13,32,33

The application of ML in pediatric diseases is limited
but is rapidly emerging. Areas of interest included mi-
crobiota analysis for inflammatory bowel disease,34

and a mortality prediction model for cholestatic neo-
nates.35 The application of artificial intelligence in
pediatric aspects is scant compared to the adult group.
Our study introduces a new model for prioritizing
genetic testing in the clinical algorithm for the vast
population of cholestatic infants

The “positive cases” of genetic diseases in our
cohort represented a heterogeneous group; thus, our
model is not predictive of a single genetic disorder, or
“hot spot” diseases, but a group of genetic disorders.
This cohort reflects the real‐world situation in a popu-
lation with rare consanguinity. Our center has long
experience with next‐generation sequencing for the
diagnosis of genetic liver disease, integrating

conventional Sanger sequencing to a panel‐based
approach and exome sequencing,17 providing ser-
vices for domestic and international cases. Thus, our
experience in diagnosing genetic liver diseases is well‐
established and representative. With the increasing
demand for genetic testing worldwide, we believe our
model will be of much value in future diagnostic algo-
rithms in this situation.

Our serial data demonstrated that during the follow‐
up period, the levels of direct bilirubin, AST, and ALT
became distinguishable, and were significantly higher
in patients with genetic cholestatic liver diseases; and
higher ALP levels showed differences at baseline.
Interestingly, the ML model analyzing variable impor-
tance gave valuable insight into our model. In the
analysis, earlier onset age, prematurity, lower birth
body weight, and parental nutrition were less likely to
have a genetic disease, possibly indicating that many
of the cholestasis cases were related to transient
neonatal cholestasis.36–38 However, some mono-
genetic liver diseases can also present in early infancy,
such as Alagille syndrome, Niemann‐Pick type C, pro-
gressive familial intrahepatic cholestasis, and mito-
chondrial DNA depletion syndromes. Among the
substantial number of early‐onset cases without
genetically related cholestasis, benign causes of tran-
sient cholestasis and cholestasis related to total par-
enteral nutrition likely play significant roles.36 The
levels of bilirubin, AST, ALT, and GGT are the in-
dicators of hepatocellular, hepatobiliary cell injury, or
oxidative stress, and all are conceivable to be essential
parameters for liver diseases.

This study has some limitations. These prediction
models were established from a single tertiary referral
center. To validate the model in a larger cohort, we plan

F IGURE 4 A simplified diagram illustrating
the use of a machine learning prediction model in
clinical settings. JADE‐B, Jaundice Diagnosis
Easy for Baby; WES, whole‐exome sequencing;
WGS, whole‐genome sequencing.
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to prospectively use these models for jaundiced infants
in our hospital and those cared for by international
physicians. In addition, we did not include consan-
guinity as a factor in our model development, as con-
sanguineous marriage is prohibited by law in Taiwan
and is extremely rare. Nonetheless, a family history of
index cases remains an important indicator for genetic
testing. In our model, we applied the most basic clinical
parameters and laboratory data, aiming to serve as a
quick reference prediction to aid physicians in opti-
mizing the allocation of resources for genetic testing.

5 | CONCLUSION

We have developed a diagnostic model for applying
advanced genetic tests in cholestatic patients, enabling
an efficient selection of possible cases of inherited
disease to receive genetic analysis, and expanding
chances of finding disease‐causing genes. Our long‐
term goal is to apply similar models to many other
diseases and use this approach to develop personal-
ized treatment plans that could benefit the patients.
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